Advertisement

Brain-gut axis in health and disease

      Abstract

      GASTROENTEROLOGY 1998;114:559-578

      Abbreviations:

      CEP (cortical evoked potential), CPG (central pattern generator), DMN (dorsal motor nucleus), DRG (dorsal root ganglia), EMG (electromyography), ENS (enteric nervous system), fMRI (functional magnetic resonance imaging), GI (gastrointestinal), IBS (irritable bowel syndrome), MEG (magnetoencephalography), MRI (magnetic resonance imaging), NA (nucleus ambiguus), NTS (nucleus of solitary tract), PBN (parabrachial nuclei), PET (positron emission tomography), SQUID (superconducting quantum interference device), TCMS (transcranial magnetic stimulation), WDRMN (wide dynamic range mechanonociceptors)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Almy TP.
        Historical perspectives of functional bowel disease.
        in: Pathogenesis of functional bowel disease. Plenum, New York1989: 1-11
        • Beaumont W.
        Experiments and observations on the gastric juice and the physiology of digestion.
        Dover, New York1959 ([Facsimile of the original publication of 1833.])
        • Pavlov I.
        The work of digestive glands.
        ([English translation from Russian by W. H. Thompson.]) Griffin, London1910
        • Cannon WB.
        The influence of emotional states on the functions of the alimentary canal.
        Am J Med Sci. 1909; 137: 480-487
        • Wolf S
        • Wolff HG.
        Human gastric function: an experimental study of a man and his stomach.
        Oxford University, New York1943
        • Whitehead WE.
        Effects of psychological factors on gastrointestinal function.
        in: Pathogenesis of functional bowel disease. Plenum, New York1989: 37-53
        • Creed F
        • Guthrie E.
        Psychological factors in the irritable bowel syndrome.
        Gut. 1987; 28: 1307-1318
        • Buéno L
        • Collins S
        • Junien J-L.
        Stress and digestive motility. Section II. Experimental approach in humans.
        in: Libbey, London1989: 63-111
        • Wood JR
        • Camilleri M
        • Low PA
        • Malagelada JR.
        Brain stem tumor presenting as upper gut motility disorder.
        Gastroenterology. 1985; 89: 1411-1414
        • Gordon C
        • Langton Hewer R
        • Wade DT.
        Dysphagia in acute stroke.
        Br Med J. 1987; 295: 411-414
        • Fealey RD
        • Szurszewski JH
        • Merrit JL
        • DiMagno EP.
        Effect of traumatic spinal cord transection on human upper gastrointestinal motility and gastric emptying.
        Gastroenterology. 1984; 87: 69-75
        • Gunterberg BJ
        • Kewenter I
        • Petersen I
        • Stener B.
        Anorectal function after major resections of the sacrum with bilateral or unilateral sacrifice of sacral nerves.
        Br J Surg. 1976; 63: 546-554
        • Thompson DG
        • Ritchie HD
        • Wingate DL.
        Patterns of small intestinal motility in duodenal ulcer patients before and following vagotomy.
        Gut. 1982; 23: 517-524
        • Ungerleider LG.
        Functional brain imaging studies of cortical mechanisms for memory.
        Science. 1995; 270: 769-775
        • Schacter DL.
        Illusory memories: a cognitive neuroscience analysis.
        Proc Natl Acad Sci USA. 1996; 24: 13527-13733
        • Jolles PR
        • Chapman PR
        • Alavi A.
        PET, CT and MRI in the evaluation of neuropsychiatric disorders: current applications.
        J Nucl Med. 1989; 30: 1589-1606
        • Lewine JD
        • Orrison WW.
        Clinical electroencephalography and event-related potentials.
        in: Functional brain imaging. Mosby–Year Book, St. Louis MO1995: 327-368
        • Lewine JD
        • Orrison WW.
        Magnetoencephalography and magnetic source imaging.
        in: Functional brain imaging. Mosby–Year Book, St. Louis, MO1995: 369-417
        • Orrison Jr, WW
        • Lewine JD.
        Magnetic source imaging in neurosurgical practice.
        Perspect Neurol Surg. 1993; 4: 141-148
        • Gillis RA
        • Quest JA
        • Pagini FD
        • Norman WP.
        Control centers in the central nervous system for regulating gastrointestinal motility.
        in: Handbook of physiology. Oxford University, New York1989: 621-683 (Section 6. The gastrointestinal system)
        • Thompson DG.
        Extrinsic autonomic control of human gastrointestinal transit.
        in: Gastrointestinal transit: pathophysiology and pharmacology. Wrightson Biomedical, Petersfield, England1991: 13-20
        • Roman C
        • Gonella J.
        Extrinsic control of digestive tract motility.
        in: 2nd ed. Physiology of the gastrointestinal tract. Raven, New York1987: 507-553
        • Christensen J
        • DeClare DJ.
        Comparative anatomy of the oesophagus.
        Gastroenterology. 1974; 67: 407-408
        • Matzel KE
        • Schmidt RA
        • Tanagho EA.
        Neuroanatomy of the striated muscular anal continence mechanisms. Implications for the use of neurostimulation.
        Dis Colon Rectum. 1990; 33: 666-673
        • Furness JB
        • Costa M.
        The enteric nervous system.
        Churchill Livingstone, New York1987
        • Gershon MD.
        The enteric nervous system.
        Annu Rev Neurosci. 1981; 4: 227-272
        • Wood JD.
        Physiology of enteric neurons.
        in: Physiology of the gastrointestinal tract. Raven, New York1987: 1-41
        • Costa M
        • Brookes SJH.
        The enteric nervous system.
        Am J Gastroenterol. 1994; 89: S129-S137
        • Sengupta JN
        • Gebhart GF.
        Gastrointestinal afferent fibres and sensation.
        in: 3rd ed. Physiology of the gastrointestinal tract. Raven, New York1994: 483-519
        • Paintal AS.
        Vagal afferent fibres.
        Ergeb Physiol Biol Chem Exp Pharmacol. 1963; 52: 74-156
        • Andrews PLR.
        Vagal afferent innervation of the gastrointestinal tract.
        Prog Brain Res. 1986; 67: 65-86
        • Altschuler SM
        • Bao X
        • Bieger D
        • Hopkins DA
        • Miselis RR.
        Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts.
        J Comp Neurol. 1989; 283: 248-268
        • Altschuler SM
        • Rinaman L
        • Miselis RR.
        Viscerotopic representation of the alimentary tract in the dorsal and ventral vagal complexes in the rat.
        in: Neuroanatomy and physiology of abdominal vagal afferents. CRC, Boca Raton, FL1992: 21-53
        • Sengupta JN
        • Coauvar D
        • Goyal RK.
        Characteristics of vagal esophageal tension—sensitive afferent fibres in the opossum.
        J Neurophysiol. 1989; 61: 1001-1010
        • Goyal RK
        • Sengupta JN
        • Saha JK.
        Properties of esophageal mechanosensitive receptors.
        in: Advances in the innervation of the gastrointestinal tract. Elsevier Science, New York1992: 523-546
        • Randich A
        • Gebhart GF.
        Vagal afferent modulation of nociception.
        Brain Res Rev. 1992; 17: 77-99
        • Mayer EA
        • Gebhart GF.
        Basic and clinical aspects of visceral hyperalgesia.
        Gastroenterology. 1994; 107: 271-293
        • Bieger D
        • Hopkins DA.
        Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus.
        J Comp Neurol. 1987; 262: 546-562
        • Fox EA
        • Powley TL.
        Longitudinal columnar organization within the dorsal motor nucleus represents separate branches of the abdominal vagus.
        Brain Res. 1985; 341: 269-282
        • Powley TL
        • Berthoud H-R
        • Fox EA
        • Laughton W.
        The dorsal vagal complex forms a sensory-motor lattice: the circuitry of gastrointestinal reflexes.
        in: Neuroanatomy and physiology of abdominal vagal afferents. CRC, Boca Raton, FL1992: 55-79
        • Leslie RA
        • Reynolds DJM
        • Lawes INC.
        Central connections of the nuclei of the vagus nerve.
        in: Neuroanatomy and physiology of abdominal vagal afferents. CRC, Boca Raton, FL1992: 81-98
        • Rogers RC
        • Hermann GE.
        Central regulation of brainstem gastric vago-vagal control circuits.
        in: Neuroanatomy and physiology of abdominal vagal afferents. Boca Raton, FL1992: 99-134
        • Sawchenko PE.
        Central connections of the sensory and motor nuclei of the vagus nerve.
        J Auton Nerv Syst. 1983; 9: 13-26
        • Norgren R.
        Projections of the nucleus of the solitary tract in the rat.
        Neuroscience. 1978; 2: 207-218
        • Nadelhaft I
        • Roppolo J
        • Morgan C
        • DeGroat WC.
        Parasympathetic preganglionic neurons and visceral primary afferents in monkey sacral spinal cord revealed following application of horseradish peroxidase to pelvic nerve.
        J Comp Neurol. 1983; 216: 36-52
        • DeGroat WC
        • Krier J.
        The sacral parasympathetic reflex pathway regulating colonic motility and defecation in the cat.
        J Physiol Lond. 1978; 276: 481-500
        • Langworthy OR
        • Rosenberg SJ.
        Control by the central nervous system of rectal smooth muscle.
        J Neurophysiol. 1939; 2: 356-360
        • Langley JN.
        The autonomic nervous system.
        Heffer, Cambridge, England1921
        • Cervero F
        • Foreman RD.
        Sensory innervation of the viscera.
        in: Central regulation of autonomic function. Oxford University, New York1990: 104-125
        • Cervero F
        • Connel LA
        • Lawson SN.
        Somatic and visceral primary afferents in the lower thoracic dorsal root ganglia of the cat.
        J Comp Neurol. 1984; 228: 422-431
        • Jänig W
        • Morrison JFB.
        Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception.
        Prog Brain Res. 1986; 67: 78-114
        • Foreman RD
        • Blair RW
        • Webber RM.
        Viscerosomatic convergence on T-T spinoreticular, spinoreticular-spinothalamic and spinothalamic tract neurons in the cat.
        Exp Neurol. 1984; 85: 597-619
        • Ammons WS
        • Girardot MN
        • Foreman RD.
        T2-T5 spinothalamic neurons projecting to medial thalamus with viscerosomatic input.
        J Neurophysiol. 1985; 54: 73-89
        • Melzack R
        • Wall PD.
        The challenge of pain.
        Basic Books, New York1982
        • Melzack R
        • Casey KL.
        Sensory, motivational and central control determinants of pain.
        in: The skin senses. Thomas, Springfield, Illinois1968: 423-444
        • Gildenberg PL
        • Hirshberg RM.
        Limited myelotomy for the treatment of intractable cancer pain.
        J Neurol Neurosurg Psychiatr. 1984; 47: 94-96
        • Yezierski RP
        • Schwartz RH.
        Response and receptive-field properties of spinomesencephalic tract cells in the cat.
        J Neurophysiol. 1986; 55: 76-96
        • Loewy AD.
        Central autonomic pathways.
        in: Central regulation of autonomic function. Oxford University, New York1990: 88-103
        • Cechetto DF
        • Saper CB.
        Role of cerebral cortex in autonomic function.
        in: Central regulation of autonomic function. Oxford University, New York1990: 208-223
        • Sengupta JN
        • Saha JK
        • Goyal RK.
        Stimulus-response function studies of esophageal mechanosensitive nociceptors in sympathetic afferents of opossum.
        J Neurophysiol. 1990; 64: 796-812
        • Euchner-Wamser I
        • Sengupta JN
        • Gebhart GF
        • Meller ST.
        Characterisation of responses of T2-T4 spinal cord neurons to esophageal distension in the rat.
        J Neurophysiol. 1993; 69: 868-883
        • Mayer EA
        • Raybould H.
        Role of neural control in gastrointestinal motility and visceral pain.
        in: Pathogenesis of functional bowel disease. Plenum, New York1989: 13-35
        • Mayer EA
        • Raybould HE.
        Role of visceral afferent mechanisms in functional bowel disorders.
        Gastroenterology. 1990; 99: 1688-1704
        • Furness JB
        • Costa M.
        Sympathetic influences on gastrointestinal function.
        in: The enteric nervous system. Churchill Livingstone, Edinburgh1987: 200-238
        • Kreulen DL
        • Szurszewski JH.
        Reflex pathways in the abdominal prevertebral ganglia; evidence for a colo-colonic inhibitory reflex.
        J Physiol (London). 1979; 295: 21-32
        • Rostad H.
        Colonic motility in the cat. IV. Peripheral pathways mediating the effects induced by hypothalamic and mesencephalic stimulation.
        Acta Physiol Scand. 1973; 89: 154-168
        • Jean A.
        Brainstem control of swallowing: localisation and organisation of the central pattern generator for swallowing.
        in: Neurophysiology of the jaws and teeth. Macmillan, New York1990: 294-321
        • Carpenter DO.
        Central nervous system mechanisms in deglutition and emesis.
        (Motility and circulation)in: Handbook of physiology. The gastrointestinal system.Volume 1. American Physiological Society, Washington, DC1989: 685-714
        • Miller AJ.
        Deglutition.
        Physiol Rev. 1982; 62: 129-184
        • Jean A
        • Car A.
        Input to the swallowing medullary neurons from the peripheral afferent fibres and the swallowing cortical area.
        Brain Res. 1979; 178: 567-572
        • Martin RE
        • Sessle BJ.
        The role of the cerebral cortex in swallowing.
        Dysphagia. 1993; 8: 195-202
        • Nathan PW
        • Smith MC.
        Spinal pathways for defecation and sensation from the lower bowel.
        J Neurol Neurosurg. 1953; 16: 245-256
        • Nakagawa S.
        Onuf's nucleus of the sacral cord in a South American monkey (Saimiri): its location and bilateral cortical input from area 4.
        Brain Res. 1980; 191: 337-344
        • Ueyama T
        • Arakawa H
        • Mizuno N.
        Contralateral termination of pudendal nerve fibers in the gracile nucleus of the rat.
        Neurosci Lett. 1985; 62: 113-117
        • Fukuda H.
        Projections of the afferents from the distal colon onto the cerebral cortex of the dog.
        Auton Nerv Syst. 1978; 16 (abstr): 33
        • Chiappa KH.
        Principles of evoked potentials.
        in: Evoked potentials in clinical medicine. Raven, New York1983: 1-25
        • Jasper HH.
        The 10-20 electrode system of the international federation.
        Electroencepholog Clin Neurophysiol. 1958; 10: 371-375
        • Donchin E
        • Callaway E
        • Cooper R
        • Desmedt JE
        • Goff WR
        • Hillyard SA
        • Saturn S.
        Publication criteria for studies of evoked potential (EP) in man. Report of a committee.
        Prog Clin Neurophysiol. 1977; 1: 1-11
        • Duffy FH.
        Brain electrical activity mapping: issues and answers.
        in: Topographic mapping of brain electrical activity. Butterworths, New York1986: 401-417
        • Duffy FH.
        Topographic mapping of brain electrical activity: clinical applications and issues.
        in: Topographic brain mapping of EEG and evoked potentials. Springer–Verlag, Berlin1989: 19-52
        • Wood CC.
        Application of dipole localization methods to source identification of human evoked potentials.
        Ann NY Acad Sci. 1982; 388: 139-155
        • Frieling T
        • Enck P
        • Wienbeck M.
        Cerebral responses evoked by electrical stimulation of the esophagus in normal subjects.
        Gastroenterology. 1989; 97: 475-478
        • Tougas G
        • Hudoba P
        • Fitzpatrick D
        • Hunt RH
        • Upton ARM.
        Cerebral-evoked potential responses following direct vagal stimulation and oesophageal electrical stimulation in humans.
        Am J Physiol. 1993; 264: G486-G491
        • Frøbert O
        • Arendt-Nielsen L
        • Bak P
        • Anderson OK
        • Funch-Jensen P
        • Bagger JP.
        Electrical stimulation of the esophageal mucosa. Perception and brain evoked potentials.
        Scand J Gastroenterol. 1994; 29: 776-781
        • Frøbert O
        • Arendt-Nielsen L
        • Bak P
        • Funch-Jensen P
        • Bagger JP.
        Oesophageal sensation assessed by electrical stimuli and brain evoked potentials—a new model for visceral nociception.
        Gut. 1995; 37: 603-609
        • Sollenbohmer CH
        • Enck P
        • Haussinger D
        • Frieling T.
        Electrically evoked cerebral potentials during esophageal distension at perception and pain threshold.
        Am J Gastroenterol. 1996; 91: 970-975
        • Collman PI
        • Tremblay L
        • Diamant NE.
        The distribution of spinal and vagal sensory neurons that innervate the esophagus of the cat.
        Gastroenterology. 1992; 103: 817-822
        • Castell DO
        • Wood JD
        • Freiling T
        • Wright FS
        • Vieth RF.
        Cerebral electrical potentials evoked by balloon distention of the human esophagus.
        Gastroenterology. 1990; 98: 662-666
        • Smout AJPM
        • Devore MS
        • Castell DO.
        Cerebral potentials evoked by oesophageal distension in humans.
        Am J Physiol. 1990; 259: G955-G959
        • DeVault KR
        • Beacham S
        • Streletz LJ
        • Castell DO.
        Cerebral evoked potentials: a method of quantification of central nervous system response to esophageal pain.
        Dig Dis Sci. 1993; 38: 2241-2246
        • Weusten BL
        • Lam H
        • Akkermanns L
        • Van Berge-Hennebouwen G
        • Smout AJ.
        Influence of age on cerebral potentials evoked by esophageal distension in humans.
        Eur J Clin Invest. 1994; 24: 627-631
        • Weusten BL
        • Franssen H
        • Wieneke GH
        • Smout AJ.
        Multichannel recording of cerebral potentials evoked by esophageal balloon distension in humans.
        Dig Dis Sci. 1994; 39: 2074-2083
        • Franssen H
        • Weusten B.LAM
        • Wieneke GH
        • Smout AJPM
        Source modeling of esophageal evoked potentials.
        Electroencephalogr Clin Neurophysiol. 1996; 100: 85-95
        • Aziz Q
        • Furlong PL
        • Barlow J
        • Hobson A
        • Alani S
        • Bancewicz J
        • Ribbands M
        • Harding GFA
        • Thompson DG.
        Topographic mapping of cortical potentials evoked by distension of the human proximal and distal oesophagus.
        Electroencephalog Clin Neurophysiol. 1995; 96: 219-228
        • Smout AJP
        • DeVore MS
        • Dalton CB
        • Castell DO.
        Cerebral potentials evoked by oesophageal distension in patients with non-cardiac chest pain.
        Gut. 1992; 33: 298-302
        • DeVault KR
        • Beacham S
        • Castell DO
        • Streletz LJ
        • Ditunno JF.
        Esophageal sensation in spinal cord–injured patients: balloon distension and cerebral evoked potential recording.
        Am J Physiol. 1996; 271: G937-G941
        • Christensen J
        • Lund GF.
        Esophageal responses to distension and electrical stimulation.
        J Clin Invest. 1969; 48: 408-419
        • Mesulam MM
        • Mufson EF.
        The insula of Reil in man and monkey. Architectonics, connectivity and function.
        in: Cerebral cortex. Plenum, New York1985: 179-226
        • Frobert O
        • Arendt-Nielsen L
        • Bak P
        • Funch-Jensen P
        • Peder Bagger J.
        Pain perception and brain evoked potentials in patients with angina despite normal coronary angiograms.
        Heart. 1996; 75: 436-441
        • Clouse RE
        • Carney RM.
        The psychological profile of non-cardiac chest pain patients.
        Eur J Gastroenterol Hepatol. 1995; 12: 1160-1165
        • Rathmann W
        • Enck P
        • Frieling T
        • Gries FA.
        Visceral afferent neuropathy in diabetic gastroparesis.
        Diabetes Care. 1991; 14: 1086-1089
        • Meunier P
        • Collet L
        • Ducleaux R
        • Chéry-Croze S.
        Endorectal cerebral potentials in humans.
        Int J Neurosci. 1987; 37: 193-196
        • Frieling T
        • Enck P
        • Wienbeck M.
        Cerebral responses evoked by electrical stimulation of rectosigmoid in normal subjects.
        Dig Dis Sci. 1989; 34: 202-205
        • Loening-Baucke V
        • Read NW
        • Yamada T.
        Cerebral evoked potentials after rectal stimulation.
        Electroencephalogr Clin Neurophysiol. 1991; 80: 490-495
        • Loening-Baucke V
        • Read NW
        • Yamada T.
        Further evaluation of the afferent nervous pathways from the rectum.
        Am J Physiol. 1992; 262: G927-G933
        • Delechenault P
        • Leroi AM
        • Bruna T
        • Denis P
        • Weber J.
        Cerebral potentials evoked by electrical stimulation of the anal canal.
        Dis Colon Rectum. 1993; 36: 55-56
        • Collet L
        • Meunier P
        • Duclaux R
        • Chery-Croze S
        • Falipou P.
        Cerebral evoked potentials after endorectal mechanical stimulations in humans.
        Am J Physiol. 1988; 254: G477-G482
        • Loening-Baucke V
        • Yamada T.
        Cerebral potentials evoked by rectal distension in humans.
        Electroencephalogr Clin Neurophysiol. 1993; 88: 447-452
        • Loening-Baucke V
        • Yamada T.
        Is the afferent pathway from the rectum impaired in children with chronic constipation and encopresis.
        Gastroenterology. 1995; 109: 397-403
        • Speakman CTM
        • Kamm MA
        • Swash M.
        Rectal sensory evoked potentials: as assessment of their clinical value.
        Int J Colorect Dis. 1993; 8: 23-28
        • Williamson SJ
        • Lü Z-L
        • Karron D
        • Kuafman L.
        Advantages and limitations of magnetic source imaging.
        Brain Topogr. 1991; 4: 169-180
        • Gallen CC
        • Hirschkoff EC
        • Buchanan DC.
        Magnetoencephalography and magnetic source imaging. Capabilities and limitations.
        Funct Neuroimaging. 1995; 5: 227-249
        • Furlong PL
        • Aziz Q
        • Singh KD
        • Thompson DG
        • Hobson A
        • Harding GFA.
        Cortical localization of magnetic fields evoked by esophageal distension.
        Electroencephalogr Clin Neurophysiol. 1997; (in press)
        • Schnitzler A
        • Volkmann J
        • Enck P
        • Frieling T
        • Friend H-J
        • White OW.
        Cortical representation of visceral and somatic sensation in humans.
        Soc Neurosci Abstr. 1996; 22: 50.13
        • Hartshorne MF.
        Positron emission tomography.
        in: Functional brain imaging. 1995: 187-212
        • Aine CJ.
        A conceptual overview and critique of functional neuroimaging in humans. I. MRI/fMRI and PET.
        Crit Rev Neurobiol. 1995; 9: 229-309
        • Raichle ME.
        Circulatory and metabolic correlates of brain function in normal humans.
        (Section 1. The nervous system Higher functions of the brain)in: Handbook of physiology.Volume V. American Physiological Society, Washington, DC1987: 643-673
        • Hsieh J-C.
        Central processing of pain. Functional brain imaging studies with PET. PhD Thesis.
        Stockholm University,, Sweden1995 (ISBN:91-628-1722-1)
        • Aziz Q
        • Andersson J
        • Valind S
        • Sundin A
        • Hamdy S
        • Jones AKP
        • Foster ER
        • Langstrom B
        • Thompson DG.
        Identification of human brain loci processing esophageal sensation using positron emission tomography.
        Gastroenterology. 1997; 113: 50-60
        • Talbot JD
        • Marrett S
        • Evans AC
        • Meyer E
        • Bushnell MC
        • Duncan GH.
        Multiple representations of pain in human cerebral cortex.
        Science. 1991; 251: 1355-1358
        • Silverman DHS
        • Munakata JA
        • Ennes H
        • Mandelkern MA
        • Hon CK
        • Mayer EA.
        Regional cerebral activity in normal and pathological perception of visceral pain.
        Gastroenterology. 1997; 112: 64-72
        • Munakata J
        • Silvermann DHS
        • Hoh CK
        • Mandelkern MA
        • Blahd W
        • Mayer EA.
        Rectosigmoid sensitization correlates with thalamic response to rectal pain: an O-15-water PET study of normal subjects and IBS patients.
        Gastroenterology. 1996; (abstr): A720
        • Mayer EA
        • Munakata J
        • Mandelkern M
        • Hoh K
        • Kodner A
        • Naliboff B
        • Silvermann DHS.
        Correlation of cortical and subcortical brain activation with autonomic responses to rectal stimuli in humans.
        Gastroenterology. 1996; (abstr): A715
        • Morley S
        • Pallin V.
        Scaling the affective domain of pain: a study of the dimensionality of verbal descriptors.
        Pain. 1995; 62: 39-49
        • Sanders JA
        • Orrison WW.
        Functional magnetic resonance imaging.
        in: Functional brain imaging. Mosby–Year Book,, St. Louis, MO1995: 239-326
        • Hajnal JV
        • Myers R
        • Oatridge A
        • Schwieso JE
        • Young IR
        • Bydder GM.
        Artifacts due to stimulus correlated motion in functional imaging of the brain.
        Magn Reson Med. 1994; 31: 283-291
        • Kern M
        • Arndorfer RC
        • Jesmanowicz A
        • Estkowski L
        • Hyde J
        • Shaker R.
        Proximal and distal esophageal viscero sensation have different cerebral cortical activity regions and characteristics.
        Gastroenterology. 1996; (abstr): 693
        • Hughes D
        • Jones APK
        • Robinson L.
        • Aziz Q
        • Hamdy S
        • Thompson DG.
        Functional MRI at one tesla: localisation of the cortical centres for oesophageal function.
        Neuroradiol Abstr. 1995; 37: 164
        • Shaker R
        • Kern M
        • Arndorfer RC
        • Jesmanowicz A
        • Hyde J.
        Cerebral cortical FMRI responses to esophageal acid exposure and distension: a comparative study.
        Gastroenterology. 1996; (abstr): A395
        • Binkofski F
        • Schnitzler A
        • Enck P
        • Posse S
        • Frieling T
        • Aziz Q
        • Muller-Gartner HW
        • Freund HJ.
        Stimulation of the esophagus activates secondary somatosensory and insular cortex: a fMRI study.
        Neuroimage. 1997; 5 (abstr): S205
        • Barker AT
        • Jalinous R
        • Freestone IL.
        Non-invasive magnetic stimulation of the human motor cortex.
        Lancet. 1985; 1: 1106-1107
        • Barker AT
        • Freestone IL
        • Jalinous R
        • Jarrat JA.
        Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation.
        Neurosurgery. 1987; 20: 100-109
        • Rothwell JC
        • Thompson PD
        • Day BL
        • Boyd S
        • Marsden CD.
        Stimulation of the human motor cortex through the scalp.
        Exp Physiol. 1991; 76: 159-200
        • Faraday M.
        Experimental research in electricity.
        Quaritch. 1839; 1: 1-15
        • Jalinous R.
        Technical and practical aspects of magnetic nerve stimulation.
        J Clin Neurophysiol. 1991; 8: 10-25
        • Levy WJ
        • Amassian VE
        • Schmid UD
        • Jungries CA.
        Mapping of motor cortex gyral sites non-invasively by transcranial magnetic stimulation in normal subjects and patients.
        Electroencephalogr Clin Neurophysiol Suppl. 1991; 43: 51-75
        • Aziz Q
        • Rothwell JC
        • Hamdy S
        • Barlow J
        • Thompson DG.
        The topographic representation of esophageal motor function on the human cerebral cortex.
        Gastroenterology. 1996; 111: 855-862
        • Hamdy S
        • Aziz Q
        • Rothwell JC
        • Singh KD
        • Barlow J
        • Hughes DG
        • Tallis RC
        • Thompson DG.
        The cortical topography of human swallowing musculature in health and disease.
        Nat Med. 1996; 2: 1217-1224
        • Singh KD
        • Hamdy S
        • Aziz Q
        • Thompson DG.
        Topographic mapping of transcranial magnetic stimulation data on surface rendered MR images of the brain.
        Electroencephalogr Clin Neurophysiol. 1997; 105: 345-351
        • Bridgers S.
        The safety of transcranial magnetic stimulation reconsidered: evidence regarding cognitive and other cerebral effects.
        Electroencephalogr Clin Neurophysiol Suppl. 1991; 43: 170-179
        • Aziz Q
        • Rothwell JC
        • Barlow J
        • Hobson A
        • Alani S
        • Bancewicz J
        • Thompson DG.
        Esophageal myoelectric responses to magnetic stimulation of the human cortex and the extra-cranial vagus nerve.
        Am J Physiol. 1994; 267: G827-G835
        • Aziz Q
        • Rothwell JC
        • Barlow J
        • Thompson DG.
        Modulation of oesophageal responses to magnetoelectric stimulation of the human brain by swallowing and by vagal stimulation.
        Gastroenterology. 1995; 109: 1437-1445
        • Diamant NE.
        A glimpse at the central mechanism for swallowing.
        Gastroenterology. 1995; 109: 1700-1702
        • Diamant NE.
        Firing up the swallowing mechanism.
        Nat Med. 1996; 2: 1190-1191
        • Rossi GF
        • Brodal A.
        Corticofugal fibres to the brain-stem reticular formation. An experimental study in the cat.
        J Anat. 1956; 90: 42-62
        • Walberg F.
        Do the motor nuclei of cranial nerves receive corticofugal fibers? An experimental study in cat.
        Brain. 1957; 80: 597-605
        • Hamdy S
        • Aziz Q
        • Rothwell JC.
        • Hobson A
        • Barlow J
        • Thompson DG.
        Cranial nerve modulation of human cortical swallowing motor pathways.
        Am J Physiol. 1997; 272: G802-G808
        • Robbins JA
        • Levine RL
        • Maser A
        • Rosenbek JC
        • Kempster GB.
        Swallowing after unilateral stroke of the cerebral cortex.
        Arch Phys Med Rehab. 1993; 74: 1295-1300
        • Hamdy S
        • Crone R
        • Aziz Q
        • Rothwell JC
        • Tallis RC
        • Thompson DG.
        Does dysphagia in unilateral hemispheric stroke depend on cerebral asymmetry of swallowing motor function.
        J Physiol. 1996; 491 (abstr)?: 118P
        • Hamdy S
        • Aziz Q
        • Crone R
        • Rothwell JC
        • Hughes DG
        • Tallis RC
        • Thompson DG.
        Explaining oropharyngeal dysphagia after unilateral hemispheric stroke.
        Lancet. 1997; 350: 686-692
        • Ertekin C
        • Hansen MV
        • Larsson LE
        • Sjödahl R.
        Examination of the descending pathway to the external anal sphincter and pelvic floor muscles by transcranial cortical stimulation.
        Electroencephalogr Clin Neurophysiol. 1990; 75: 500-510
        • Herdmann J
        • Bielefeldt K
        • Enck P.
        Quantification of motor pathways to the pelvic floor in humans.
        Am J Physiol. 1991; 260: G720-G723
        • Turnbull GK
        • Aziz Q
        • Hamdy S
        • Barlow J
        • Singh K
        • Alani S
        • Thompson DG.
        Representation of the anal sphincter on the human cerebral cortex.
        Gut. 1994; 35 (abstr): S30
        • Herdmann J
        • Enck P
        • Zacchi-Deutschbein P
        • Ostermann U.
        Speed and pressure characteristics of external anal sphincter contractions.
        Am J Physiol. 1995; 32: G225-G231
        • Moriarty KJ
        • Dawson AM.
        Functional abdominal pain: further evidence that the whole gut is affected.
        Br Med J. 1982; 284: 1670-1672