Advertisement
Original Research Full Report: Basic and Translational—Alimentary Tract| Volume 160, ISSUE 4, P1301-1314.e8, March 01, 2021

Fusobacterium nucleatum Adheres to Clostridioides difficile via the RadD Adhesin to Enhance Biofilm Formation in Intestinal Mucus

Published:November 20, 2020DOI:https://doi.org/10.1053/j.gastro.2020.11.034

      Background & Aims

      Although Clostridioides difficile infection (CDI) is known to involve the disruption of the gut microbiota, little is understood regarding how mucus-associated microbes interact with C difficile. We hypothesized that select mucus-associated bacteria would promote C difficile colonization and biofilm formation.

      Methods

      To create a model of the human intestinal mucus layer and gut microbiota, we used bioreactors inoculated with healthy human feces, treated with clindamycin and infected with C difficile with the addition of human MUC2-coated coverslips.

      Results

      C difficile was found to colonize and form biofilms on MUC2-coated coverslips, and 16S rRNA sequencing showed a unique biofilm profile with substantial cocolonization with Fusobacterium species. Consistent with our bioreactor data, publicly available data sets and patient stool samples showed that a subset of patients with C difficile infection harbored high levels of Fusobacterium species. We observed colocalization of C difficile and F nucleatum in an aggregation assay using adult patients and stool of pediatric patients with inflammatory bowel disease and in tissue sections of patients with CDI. C difficile strains were found to coaggregate with F nucleatum subspecies in vitro; an effect that was inhibited by blocking or mutating the adhesin RadD on Fusobacterium and removal of flagella on C difficile. Aggregation was shown to be unique between F nucleatum and C difficile, because other gut commensals did not aggregate with C difficile. Addition of F nucleatum also enhanced C difficile biofilm formation and extracellular polysaccharide production.

      Conclusions

      Collectively, these data show a unique interaction of between pathogenic C difficile and F nucleatum in the intestinal mucus layer.

      Graphical abstract

      Keywords

      Abbreviations used in this paper:

      APTS (3-aminopropyltriethoxysilane), BHIS (brain-heart-infusion supplemented media), CDI (Clostridioides difficile infection), CDMM (chemically defined minimal medium), CFDA-SE (carboxyfluorescein diacetate succinimidyl ester), CFU (colony-forming unit), FISH (fluorescence in situ hybridization), gDNA (genomic DNA), IBD (inflammatory bowel disease), OD (optical density), OTU (operational taxonimic unit), PBS (phosphate-buffered saline), qPCR (quantitative polymerase chain reaction), RNA-seq (RNA sequencing), rRNA (ribosomal RNA), SEM (scanning electron microscopy), subsp (subspecies)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dubberke E.R.
        • Carling P.
        • Carrico R.
        • et al.
        Strategies to prevent Clostridium difficile infections in acute care hospitals: 2014 update.
        Infect Control Hosp Epidemiol. 2014; 35: S48-S65
        • Leffler D.A.
        • Lamont J.T.
        Clostridium difficile infection.
        N Engl J Med. 2015; 373: 287-288
        • Schneider D.
        • Thurmer A.
        • Gollnow K.
        • et al.
        Gut bacterial communities of diarrheic patients with indications of Clostridioides difficile infection.
        Sci Data. 2017; 4: 170152
        • Schubert A.M.
        • Rogers M.A.
        • Ring C.
        • et al.
        Microbiome data distinguish patients with Clostridium difficile infection and non-C difficile-associated diarrhea from healthy controls.
        mBio. 2014; 5 (e01021-14)
        • Semenyuk E.G.
        • Poroyko V.A.
        • Johnston P.F.
        • et al.
        Analysis of bacterial communities during Clostridium difficile infection in the mouse.
        Infect Immun. 2015; 83: 4383-4391
        • Engevik M.A.
        • Yacyshyn M.B.
        • Engevik K.A.
        • et al.
        Human Clostridium difficile infection: altered mucus production and composition.
        Am J Physiol Gastrointest Liver Physiol. 2015; 308: G510-G524
        • Engevik M.A.
        • Luk B.
        • Chang-Graham A.L.
        • et al.
        Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways.
        mBio. 2019; 10 (e01087-19)
        • Yamakawa K.
        • Kamiya S.
        • Meng X.Q.
        • et al.
        Toxin production by Clostridium difficile in a defined medium with limited amino acids.
        J Med Microbiol. 1994; 41: 319-323
        • Bainer R.
        • Park H.
        • Cluzel P.
        A high-throughput capillary assay for bacterial chemotaxis.
        J Microbiol Methods. 2003; 55: 315-319
        • Park J.
        • Shokeen B.
        • Haake S.K.
        • et al.
        Characterization of Fusobacterium nucleatum ATCC 23726 adhesins involved in strain-specific attachment to Porphyromonas gingivalis.
        Int J Oral Sci. 2016; 8: 138-144
        • Landry R.M.
        • An D.
        • Hupp J.T.
        • et al.
        Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance.
        Mol Microbiol. 2006; 59: 142-151
        • Chang-Graham A.L.
        • Danhof H.A.
        • Engevik M.A.
        • et al.
        Human intestinal enteroids with inducible neurogenin-3 expression as a novel model of gut hormone secretion.
        Cell Mol Gastroenterol Hepatol. 2019; 8: 209-229
        • Aires C.P.
        • Del Bel Cury A.A.
        • Tenuta L.M.
        • et al.
        Effect of starch and sucrose on dental biofilm formation and on root dentine demineralization.
        Caries Res. 2008; 42: 380-386
        • Robinson C.D.
        • Auchtung J.M.
        • Collins J.
        • et al.
        Epidemic Clostridium difficile strains demonstrate increased competitive fitness compared to nonepidemic isolates.
        Infect Immun. 2014; 82: 2815-2825
        • Wattam A.R.
        • Davis J.J.
        • Assaf R.
        • et al.
        Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center.
        Nucleic Acids Res. 2017; 45: D535-D542
        • Karygianni L.
        • Follo M.
        • Hellwig E.
        • et al.
        Microscope-based imaging platform for large-scale analysis of oral biofilms.
        Appl Environ Microbiol. 2012; 78: 8703-8711
        • Sato T.
        • Stange D.E.
        • Ferrante M.
        • et al.
        Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium.
        Gastroenterology. 2011; 141: 1762-1772
        • He X.
        • Hu W.
        • Kaplan C.W.
        • et al.
        Adherence to streptococci facilitates Fusobacterium nucleatum integration into an oral microbial community.
        Microb Ecol. 2012; 63: 532-542
        • Fukugaiti M.H.
        • Ignacio A.
        • Fernandes M.R.
        • et al.
        High occurrence of Fusobacterium nucleatum and Clostridium difficile in the intestinal microbiota of colorectal carcinoma patients.
        Braz J Microbiol. 2015; 46: 1135-1140
        • Khanna S.
        • Montassier E.
        • Schmidt B.
        • et al.
        Gut microbiome predictors of treatment response and recurrence in primary Clostridium difficile infection.
        Aliment Pharmacol Ther. 2016; 44: 715-727
        • Battaglioli E.J.
        • Hale V.L.
        • Chen J.
        • et al.
        Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea.
        Sci Transl Med. 2018; 10eaam7019
        • Seekatz A.M.
        • Rao K.
        • Santhosh K.
        • et al.
        Dynamics of the fecal microbiome in patients with recurrent and nonrecurrent Clostridium difficile infection.
        Genome Med. 2016; 8: 47
        • Davido D.J.
        • Richter F.
        • Boxberger F.
        • et al.
        Butyrate and propionate downregulate ERK phosphorylation in HT-29 colon carcinoma cells prior to differentiation.
        Eur J Cancer Prev. 2001; 10: 313-321
        • Khanna R.
        • Chande N.
        • Nelson R.L.
        Treatment of an initial infection with Clostridium difficile in patients with inflammatory bowel disease.
        Inflamm Bowel Dis. 2013; 19: 2223-2226
        • Nawrocki K.L.
        • Wetzel D.
        • Jones J.B.
        • et al.
        Ethanolamine is a valuable nutrient source that impacts Clostridium difficile pathogenesis.
        Environ Microbiol. 2018; 20: 1419-1435
        • Abed J.
        • Emgard J.E.
        • Zamir G.
        • et al.
        Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc.
        Cell Host Microbe. 2016; 20: 215-225
        • Kaplan C.W.
        • Lux R.
        • Haake S.K.
        • et al.
        The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm.
        Mol Microbiol. 2009; 71: 35-47
        • Tay W.H.
        • Chong K.K.
        • Kline K.A.
        Polymicrobial-host interactions during infection.
        J Mol Biol. 2016; 428: 3355-3371
        • Karpathy S.E.
        • Qin X.
        • Gioia J.
        • et al.
        Genome sequence of Fusobacterium nucleatum subspecies polymorphum — a genetically tractable fusobacterium.
        PLoS One. 2007; 2: e659
        • Brennan C.A.
        • Garrett W.S.
        Fusobacterium nucleatum—symbiont, opportunist and oncobacterium.
        Nat Rev Microbiol. 2019; 17: 156-166
        • Strauss J.
        • Kaplan G.G.
        • Beck P.L.
        • et al.
        Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host.
        Inflamm Bowel Dis. 2011; 17: 1971-1978
        • Lee Y.
        • Eun C.S.
        • Lee A.R.
        • et al.
        Fusobacterium isolates recovered from colonic biopsies of inflammatory bowel disease patients in Korea.
        Ann Lab Med. 2016; 36: 387-389
        • de Meij T.G.J.
        • de Groot E.F.J.
        • Peeters C.F.W.
        • et al.
        Variability of core microbiota in newly diagnosed treatment-naïve paediatric inflammatory bowel disease patients.
        PLoS One. 2018; 13e0197649
        • Balram B.
        • Battat R.
        • Al-Khoury A.
        • et al.
        Risk factors associated with Clostridium difficile infection in inflammatory bowel disease: a systematic review and meta-analysis.
        J Crohns Colitis. 2019; 13: 27-38
        • Gonyar L.A.
        • Kendall M.M.
        Ethanolamine and choline promote expression of putative and characterized fimbriae in enterohemorrhagic Escherichia coli O157:H7.
        Infect Immun. 2014; 82: 193-201
        • Kendall M.M.
        • Gruber C.C.
        • Parker C.T.
        • et al.
        Ethanolamine controls expression of genes encoding components involved in interkingdom signaling and virulence in enterohemorrhagic Escherichia coli O157:H7.
        mBio. 2012; 3 (e00050-12)
        • Janoir C.
        • Deneve C.
        • Bouttier S.
        • et al.
        Adaptive strategies and pathogenesis of Clostridium difficile from in vivo transcriptomics.
        Infect Immun. 2013; 81: 3757-3769
        • Hendrickson E.L.
        • Wang T.
        • Beck D.A.
        • et al.
        Proteomics of Fusobacterium nucleatum within a model developing oral microbial community.
        Microbiologyopen. 2014; 3: 729-751
        • Garsin D.A.
        Ethanolamine utilization in bacterial pathogens: roles and regulation.
        Nat Rev Microbiol. 2010; 8: 290-295

      Supplementary References

        • Robinson C.D.
        • Auchtung J.M.
        • Collins J.
        • et al.
        Epidemic Clostridium difficile strains demonstrate increased competitive fitness compared to nonepidemic isolates.
        Infect Immun. 2014; 82: 2815-2825
        • Auchtung J.M.
        • Robinson C.D.
        • Britton R.A.
        Cultivation of stable, reproducible microbial communities from different fecal donors using minibioreactor arrays (MBRAs).
        Microbiome. 2015; 3: 42
        • Savli H.
        • Karadenizli A.
        • Kolayli F.
        • et al.
        Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR.
        J Med Microbiol. 2003; 52: 403-408
        • Le Guyon S.L.
        • Rhen M.
        • Römling U.
        Rapid preparation of unsheathed bacterial flagella.
        Bio-protocol. 2015; 5: e1425
        • Park J.
        • Shokeen B.
        • Haake S.K.
        • et al.
        Characterization of Fusobacterium nucleatum ATCC 23726 adhesins involved in strain-specific attachment to Porphyromonas gingivalis.
        Int J Oral Sci. 2016; 8: 138-144
        • Luna R.A.
        • Oezguen N.
        • Balderas M.
        • et al.
        Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder.
        Cell Mol Gastroenterol Hepatol. 2016; 3: 218-230
        • Kozich J.J.
        • Westcott S.L.
        • Baxter N.T.
        • et al.
        Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform.
        Appl Environ Microbiol. 2013; 79: 5112-5120
        • Langmead B.
        • Salzberg S.L.
        Fast gapped-read alignment with Bowtie 2.
        Nat Methods. 2012; 9: 357-359
        • Hildebrand F.
        • Tadeo R.
        • Voigt A.Y.
        • et al.
        LotuS: an efficient and user-friendly OTU processing pipeline.
        Microbiome. 2014; 2: 30
        • Pammi M.
        • Thapa S.
        • Balderas M.
        • et al.
        Microbiome signatures in neonatal central line associated bloodstream infections.
        PLoS One. 2020; 15e0227967
        • Parks D.H.
        • Tyson G.W.
        • Hugenholtz P.
        • et al.
        STAMP: statistical analysis of taxonomic and functional profiles.
        Bioinformatics. 2014; 30: 3123-3124
        • Langmead B.
        • Salzberg S.L.
        Fast gapped-read alignment with Bowtie 2.
        Nat Methods. 2012; 9: 357-359
        • Zhang J.
        • Kobert K.
        • Flouri T.
        • et al.
        PEAR: a fast and accurate Illumina Paired-End reAd mergeR.
        Bioinformatics. 2014; 30: 614-620
        • Rognes T.
        • Flouri T.
        • Nichols B.
        • et al.
        VSEARCH: a versatile open source tool for metagenomics.
        PeerJ. 2016; 4e2584
        • Caporaso J.G.
        • Kuczynski J.
        • Stombaugh J.
        • et al.
        QIIME allows analysis of high-throughput community sequencing data.
        Nat Methods. 2010; 7: 335-336
        • Gao X.
        • Lin H.
        • Revanna K.
        • et al.
        A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy.
        BMC Bioinformatics. 2017; 18: 247
        • Karpathy S.E.
        • Qin X.
        • Gioia J.
        • et al.
        Genome sequence of Fusobacterium nucleatum subspecies polymorphum — a genetically tractable fusobacterium.
        PLoS One. 2007; 2: e659
        • Wattam A.R.
        • Davis J.J.
        • Assaf R.
        • et al.
        Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center.
        Nucleic Acids Res. 2017; 45: D535-D542
        • Semenyuk E.G.
        • Poroyko V.A.
        • Johnston P.F.
        • et al.
        Analysis of bacterial communities during Clostridium difficile infection in the mouse.
        Infect Immun. 2015; 83: 4383-4391
        • Karygianni L.
        • Follo M.
        • Hellwig E.
        • et al.
        Microscope-based imaging platform for large-scale analysis of oral biofilms.
        Appl Environ Microbiol. 2012; 78: 8703-8711