Original Research Full Report: Basic and Translational—Alimentary Tract| Volume 157, ISSUE 1, P179-192.e2, July 01, 2019

Interactions Between Commensal Bacteria and Enteric Neurons, via FPR1 Induction of ROS, Increase Gastrointestinal Motility in Mice

      Background & Aims

      Reduced gastrointestinal (GI) motility is a feature of disorders associated with intestinal dysbiosis and loss of beneficial microbes. It is not clear how consumption of beneficial commensal microbes, marketed as probiotics, affects the enteric nervous system (ENS). We studied the effects of the widely used probiotic and the commensal Lactobacillus rhamnosus GG (LGG) on ENS and GI motility in mice.


      Conventional and germ free C57B6 mice were gavaged with LGG and intestinal tissues were collected; changes in the enteric neuronal subtypes were assessed by real-time polymerase chain reaction, immunoblots, and immunostaining. Production of reactive oxygen species (ROS) in the jejunal myenteric plexi and phosphorylation (p) of mitogen-activated protein kinase 1 (MAPK1) in the enteric ganglia were assessed by immunoblots and immunostaining. Fluorescence in situ hybridization was performed on jejunal cryosections with probes to detect formyl peptide receptor 1 (FPR1). GI motility in conventional mice was assessed after daily gavage of LGG for 1 week.


      Feeding of LGG to mice stimulated myenteric production of ROS, increased levels of phosphorylated MAPK1, and increased expression of choline acetyl transferase by neurons (P < .001). These effects were not observed in mice given N-acetyl cysteine (a ROS inhibitor) or LGGΩSpaC (an adhesion-mutant strain of LGG) or FPR1-knockout mice. Gavage of mice with LGG for 1 week significantly increased stool frequency, reduced total GI transit time, and increased contractions of ileal circular muscle strips in ex vivo experiments (P < .05).


      Using mouse models, we found that LGG-mediated signaling in the ENS requires bacterial adhesion, redox mechanisms, and FPR1. This pathway might be activated to increase GI motility in patients.

      Graphical abstract


      Abbreviations used in this paper:

      cfu (colony-forming units), ChAT (choline acetyl transferase), DAPI (4′,6-diamidino-2-phenylindole), ENS (enteric nervous system), fMLF (N-formyl-methionyl-leucyl-phenylalanine), FPR (formyl peptide receptor), GF (germ free), GI (gastrointestinal), HBSS (Hank’s balanced salt solution), KO (knockout), LGG (Lactobacillus rhamnosus GG), LMMP (longitudinal muscle myenteric plexus), MAPK (mitogen-activated protein kinase), NAC (N-acetyl cysteine), PCR (polymerase chain reaction), ROS (reactive oxygen species), SERT (serotonin reuptake transporter), WT (wild type)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Furness J.B.
        • Callaghan B.P.
        • Rivera L.R.
        • et al.
        The enteric nervous system and gastrointestinal innervation: integrated local and central control.
        Adv Exp Med Biol. 2014; 817: 39-71
        • Gross E.R.
        • Gershon M.D.
        • Margolis K.G.
        • et al.
        Neuronal serotonin regulates growth of the intestinal mucosa in mice.
        Gastroenterology. 2012; 143: 408-417.e2
        • Pinho-Ribeiro F.A.
        • Baddal B.
        • Haarsma R.
        • et al.
        Blocking neuronal signaling to immune cells treats streptococcal invasive infection.
        Cell. 2018; 173: 1083-1097.e22
        • Bohorquez D.V.
        • Samsa L.A.
        • Roholt A.
        • et al.
        An enteroendocrine cell-enteric glia connection revealed by 3D electron microscopy.
        PLoS One. 2014; 9: e89881
        • McVey Neufeld K.A.
        • Mao Y.K.
        • Bienenstock J.
        • et al.
        The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse.
        Neurogastroenterol Motil. 2013; 25: 183-188
        • Collins J.
        • Borojevic R.
        • Verdu E.F.
        • et al.
        Intestinal microbiota influence the early postnatal development of the enteric nervous system.
        Neurogastroenterol Motil. 2014; 26: 98-107
        • Margolis K.G.
        • Stevanovic K.
        • Karamooz N.
        • et al.
        Enteric neuronal density contributes to the severity of intestinal inflammation.
        Gastroenterology. 2011; 141: 588-598.e1–2
        • Mao Y.K.
        • Kasper D.L.
        • Wang B.
        • et al.
        Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons.
        Nat Commun. 2013; 4: 1465
        • Al-Nedawi K.
        • Mian M.F.
        • Hossain N.
        • et al.
        Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems.
        FASEB J. 2015; 29: 684-695
        • Kunze W.A.
        • Mao Y.K.
        • Wang B.
        • et al.
        Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening.
        J Cell Mol Med. 2009; 13: 2261-2270
        • Husebye E.
        • Hellstrom P.M.
        • Sundler F.
        • et al.
        Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats.
        Am J Physiol Gastrointest Liver Physiol. 2001; 280: G368-G380
        • Wu R.Y.
        • Pasyk M.
        • Wang B.
        • et al.
        Spatiotemporal maps reveal regional differences in the effects on gut motility for Lactobacillus reuteri and rhamnosus strains.
        Neurogastroenterol Motil. 2013; 25: e205-e214
        • Verdu E.F.
        • Bercik P.
        • Bergonzelli G.E.
        • et al.
        Lactobacillus paracasei normalizes muscle hypercontractility in a murine model of postinfective gut dysfunction.
        Gastroenterology. 2004; 127: 826-837
        • Alander M.
        • Satokari R.
        • Korpela R.
        • et al.
        Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption.
        Appl Environ Microbiol. 1999; 65: 351-354
        • Lin P.W.
        • Myers L.E.
        • Ray L.
        • et al.
        Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation.
        Free Radic Biol Med. 2009; 47: 1205-1211
        • Ardita C.S.
        • Mercante J.W.
        • Kwon Y.M.
        • et al.
        Epithelial adhesion mediated by pilin SpaC is required for Lactobacillus rhamnosus GG-induced cellular responses.
        Appl Environ Microbiol. 2014; 80: 5068-5077
        • Jones R.M.
        • Luo L.
        • Ardita C.S.
        • et al.
        Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species.
        EMBO J. 2013; 32: 3017-3028
        • Alam A.
        • Leoni G.
        • Quiros M.
        • et al.
        The microenvironment of injured murine gut elicits a local pro-restitutive microbiota.
        Nat Microbiol. 2016; 1: 15021
        • Kankainen M.
        • Paulin L.
        • Tynkkynen S.
        • et al.
        Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein.
        Proc Natl Acad Sci U S A. 2009; 106: 17193-17198
        • Leoni G.
        • Alam A.
        • Neumann P.A.
        • et al.
        Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair.
        J Clin Invest. 2013; 123: 443-454
        • Swanson 2nd, P.A.
        • Kumar A.
        • Samarin S.
        • et al.
        Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases.
        Proc Natl Acad Sci U S A. 2011; 108: 8803-8808
        • Yang B.
        • Treweek J.B.
        • Kulkarni R.P.
        • et al.
        Single-cell phenotyping within transparent intact tissue through whole-body clearing.
        Cell. 2014; 158: 945-958
        • Riviere S.
        • Challet L.
        • Fluegge D.
        • et al.
        Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors.
        Nature. 2009; 459: 574-577
        • Chandrasekharan B.P.
        • Kolachala V.L.
        • Dalmasso G.
        • et al.
        Adenosine 2B receptors (A(2B)AR) on enteric neurons regulate murine distal colonic motility.
        FASEB J. 2009; 23: 2727-2734
        • Li Z.
        • Chalazonitis A.
        • Huang Y.Y.
        • et al.
        Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons.
        J Neurosci. 2011; 31: 8998-9009
        • Anitha M.
        • Vijay-Kumar M.
        • Sitaraman S.V.
        • et al.
        Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling.
        Gastroenterology. 2012; 143: 1006-1016.e4
        • Alam A.
        • Leoni G.
        • Wentworth C.C.
        • et al.
        Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1.
        Mucosal Immunol. 2014; 7: 645-655
        • Kumar A.
        • Wu H.
        • Collier-Hyams L.S.
        • et al.
        Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species.
        EMBO J. 2007; 26: 4457-4466
        • Robert I.
        • Sutter A.
        • Quirin-Stricker C.
        Synergistic activation of the human choline acetyltransferase gene by c-Myb and C/EBPbeta.
        Brain Res Mol Brain Res. 2002; 106: 124-135
        • Mirpuri J.
        • Sotnikov I.
        • Myers L.
        • et al.
        Lactobacillus rhamnosus (LGG) regulates IL-10 signaling in the developing murine colon through upregulation of the IL-10R2 receptor subunit.
        PLoS One. 2012; 7: e51955
        • Wentworth C.C.
        • Alam A.
        • Jones R.M.
        • et al.
        Enteric commensal bacteria induce extracellular signal-regulated kinase pathway signaling via formyl peptide receptor-dependent redox modulation of dual specific phosphatase 3.
        J Biol Chem. 2011; 286: 38448-38455
        • Colucci M.
        • Mastriota M.
        • Maione F.
        • et al.
        Guinea pig ileum motility stimulation elicited by N-formyl-Met-Leu-Phe (fMLF) involves neurotransmitters and prostanoids.
        Peptides. 2011; 32: 266-271
        • Bornstein J.C.
        • Costa M.
        • Grider J.R.
        Enteric motor and interneuronal circuits controlling motility.
        Neurogastroenterol Motil. 2004; 16: 34-38
        • Sharrad D.F.
        • Chen B.N.
        • Gai W.P.
        • et al.
        Rotenone and elevated extracellular potassium concentration induce cell-specific fibrillation of alpha-synuclein in axons of cholinergic enteric neurons in the guinea-pig ileum.
        Neurogastroenterol Motil. 2017; 29
        • Zheng L.F.
        • Wang Z.Y.
        • Li X.F.
        • et al.
        Reduced expression of choline acetyltransferase in vagal motoneurons and gastric motor dysfunction in a 6-OHDA rat model of Parkinson's disease.
        Brain Res. 2011; 1420: 59-67
        • Dibley L.
        • Coggrave M.
        • McClurg D.
        • et al.
        “It's just horrible”: a qualitative study of patients' and carers' experiences of bowel dysfunction in multiple sclerosis.
        J Neurol. 2017; 264: 1354-1361
        • Chandrasekharan B.
        • Anitha M.
        • Blatt R.
        • et al.
        Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress.
        Neurogastroenterol Motil. 2011; 23: 131-138.e26
        • Zhang L.
        • Wang G.
        • Chen X.
        • et al.
        Formyl peptide receptors promotes neural differentiation in mouse neural stem cells by ROS generation and regulation of PI3K-AKT signaling.
        Sci Rep. 2017; 7: 206
        • Slowik A.
        • Merres J.
        • Elfgen A.
        • et al.
        Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)—and amyloid beta 1–42-induced signal transduction in glial cells.
        Mol Neurodegener. 2012; 7: 55
        • Preidis G.A.
        • Saulnier D.M.
        • Blutt S.E.
        • et al.
        Probiotics stimulate enterocyte migration and microbial diversity in the neonatal mouse intestine.
        FASEB J. 2012; 26: 1960-1969
        • Bercik P.
        • Denou E.
        • Collins J.
        • et al.
        The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice.
        Gastroenterology. 2011; 141: 599-609.e1–3
        • Bravo J.A.
        • Forsythe P.
        • Chew M.V.
        • et al.
        Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve.
        Proc Natl Acad Sci U S A. 2011; 108: 16050-16055