Advertisement

Diet as a Trigger or Therapy for Inflammatory Bowel Diseases

  • James D. Lewis
    Correspondence
    James D. Lewis, MD, MSCE, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104.
    Affiliations
    Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Maria T. Abreu
    Correspondence
    Reprint requests Address requests for reprints to: Maria T. Abreu, MD, Crohn's and Colitis Center, Department of Medicine, Department of Microbiology and Immunology, 1600 NW 10th Avenue #1140, Miami, Florida 33136.
    Affiliations
    Crohn's and Colitis Center, Department of Medicine, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
    Search for articles by this author
Published:October 25, 2016DOI:https://doi.org/10.1053/j.gastro.2016.10.019
      The most common question asked by patients with inflammatory bowel disease (IBD) is, “Doctor, what should I eat?” Findings from epidemiology studies have indicated that diets high in animal fat and low in fruits and vegetables are the most common pattern associated with an increased risk of IBD. Low levels of vitamin D also appear to be a risk factor for IBD. In murine models, diets high in fat, especially saturated animal fats, also increase inflammation, whereas supplementation with omega 3 long-chain fatty acids protect against intestinal inflammation. Unfortunately, omega 3 supplements have not been shown to decrease the risk of relapse in patients with Crohn's disease. Dietary intervention studies have shown that enteral therapy, with defined formula diets, helps children with Crohn's disease and reduces inflammation and dysbiosis. Although fiber supplements have not been shown definitively to benefit patients with IBD, soluble fiber is the best way to generate short-chain fatty acids such as butyrate, which has anti-inflammatory effects. Addition of vitamin D and curcumin has been shown to increase the efficacy of IBD therapy. There is compelling evidence from animal models that emulsifiers in processed foods increase risk for IBD. We discuss current knowledge about popular diets, including the specific carbohydrate diet and diet low in fermentable oligo-, di-, and monosaccharides and polyols. We present findings from clinical and basic science studies to help gastroenterologists navigate diet as it relates to the management of IBD.

      Keywords

      Abbreviations used in this paper:

      CD (Crohn’s disease), EEN (exclusive enteral nutrition), FGS (functional gastrointestinal symptom), FODMAP (fermentable oligo-, di-, and monosaccharides and polyols), GPR43 (G-protein–coupled receptor 43), HFD (high-fat diet), H2S (hydrogen sulfide), IBD (inflammatory bowel disease), IL (interleukin), MCT (medium-chain triglyceride), PEN (partial enteral nutrition), PUFA (polyunsaturated fatty acids), SCD (specific carbohydrate diet), SCFA (short-chain fatty acid), SRB (sulfate-reducing bacteria), TNF (tumor necrosis factor), UC (ulcerative colitis)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Liu J.Z.
        • van Sommeren S.
        • Huang H.
        • et al.
        Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations.
        Nat Genet. 2015; 47: 979-986
        • Mahid S.S.
        • Minor K.S.
        • Soto R.E.
        • et al.
        Smoking and inflammatory bowel disease: a meta-analysis.
        Mayo Clin Proc. 2006; 81: 1462-1471
        • Frank D.N.
        • St Amand A.L.
        • Feldman R.A.
        • et al.
        Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.
        Proc Natl Acad Sci U S A. 2007; 104: 13780-13785
        • Wu G.D.
        • Chen J.
        • Hoffmann C.
        • et al.
        Linking long-term dietary patterns with gut microbial enterotypes.
        Science. 2011; 334: 105-108
        • Claesson M.J.
        • Jeffery I.B.
        • Conde S.
        • et al.
        Gut microbiota composition correlates with diet and health in the elderly.
        Nature. 2012; 488: 178-184
        • David L.A.
        • Maurice C.F.
        • Carmody R.N.
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2014; 505: 559-563
        • Lewis J.D.
        • Chen E.Z.
        • Baldassano R.N.
        • et al.
        Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease.
        Cell Host Microbe. 2015; 18: 489-500
        • Zhernakova A.
        • Kurilshikov A.
        • Bonder M.J.
        • et al.
        Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity.
        Science. 2016; 352: 565-569
        • Molodecky N.A.
        • Soon I.S.
        • Rabi D.M.
        • et al.
        Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review.
        Gastroenterology. 2012; 142 (quiz e30): 46-54.e42
        • Ananthakrishnan A.N.
        • Khalili H.
        • Konijeti G.G.
        • et al.
        A prospective study of long-term intake of dietary fiber and risk of Crohn's disease and ulcerative colitis.
        Gastroenterology. 2013; 145: 970-977
        • Charlebois A.
        • Rosenfeld G.
        • Bressler B.
        The impact of dietary interventions on the symptoms of inflammatory bowel disease: a systematic review.
        Crit Rev Food Sci Nutr. 2016; 56: 1370-1378
        • Damas O.M.
        • Jahann D.A.
        • Reznik R.
        • et al.
        Phenotypic manifestations of inflammatory bowel disease differ between Hispanics and non-Hispanic whites: results of a large cohort study.
        Am J Gastroenterol. 2013; 108: 231-239
        • Barclay A.R.
        • Russell R.K.
        • Wilson M.L.
        • et al.
        Systematic review: the role of breastfeeding in the development of pediatric inflammatory bowel disease.
        J Pediatr. 2009; 155: 421-426
        • Bernstein C.N.
        • Banerjee A.
        • Targownik L.E.
        • et al.
        Cesarean section delivery is not a risk factor for development of inflammatory bowel disease: a population-based analysis.
        Clin Gastroenterol Hepatol. 2016; 14: 50-57
        • Dotan I.
        • Alper A.
        • Rachmilewitz D.
        • et al.
        Maternal inflammatory bowel disease has short and long-term effects on the health of their offspring: a multicenter study in Israel.
        J Crohns Colitis. 2013; 7: 542-550
        • Yatsunenko T.
        • Rey F.E.
        • Manary M.J.
        • et al.
        Human gut microbiome viewed across age and geography.
        Nature. 2012; 486: 222-227
        • Lim E.S.
        • Zhou Y.
        • Zhao G.
        • et al.
        Early life dynamics of the human gut virome and bacterial microbiome in infants.
        Nat Med. 2015; 21: 1228-1234
        • Jakobsson H.E.
        • Abrahamsson T.R.
        • Jenmalm M.C.
        • et al.
        Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section.
        Gut. 2014; 63: 559-566
        • Backhed F.
        • Roswall J.
        • Peng Y.
        • et al.
        Dynamics and stabilization of the human gut microbiome during the first year of life.
        Cell Host Microbe. 2015; 17: 852
        • Planer J.D.
        • Peng Y.
        • Kau A.L.
        • et al.
        Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice.
        Nature. 2016; 534: 263-266
        • Racine A.
        • Carbonnel F.
        • Chan S.S.
        • et al.
        Dietary patterns and risk of inflammatory bowel disease in Europe: results from the EPIC study.
        Inflamm Bowel Dis. 2016; 22: 345-354
        • Tjonneland A.
        • Overvad K.
        • Bergmann M.M.
        • et al.
        Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case-control study within a European prospective cohort study.
        Gut. 2009; 58: 1606-1611
        • Ananthakrishnan A.N.
        • Khalili H.
        • Konijeti G.G.
        • et al.
        Long-term intake of dietary fat and risk of ulcerative colitis and Crohn's disease.
        Gut. 2014; 63: 776-784
        • Hart A.R.
        • Luben R.
        • Olsen A.
        • et al.
        Diet in the aetiology of ulcerative colitis: a European prospective cohort study.
        Digestion. 2008; 77: 57-64
        • Pitcher M.C.
        • Cummings J.H.
        Hydrogen sulphide: a bacterial toxin in ulcerative colitis?.
        Gut. 1996; 39: 1-4
        • Wallace J.L.
        • Vong L.
        • McKnight W.
        • et al.
        Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats.
        Gastroenterology. 2009; 137 (578.e1): 569-578
        • Coffey J.C.
        • Docherty N.G.
        • O'Connell P.R.
        Hydrogen sulphide: an increasing need for scientific equipoise.
        Gastroenterology. 2009; 137 (author reply 2182): 2181-2182
        • Fiorucci S.
        • Orlandi S.
        • Mencarelli A.
        • et al.
        Enhanced activity of a hydrogen sulphide-releasing derivative of mesalamine (ATB-429) in a mouse model of colitis.
        Br J Pharmacol. 2007; 150: 996-1002
        • Werner T.
        • Wagner S.J.
        • Martinez I.
        • et al.
        Depletion of luminal iron alters the gut microbiota and prevents Crohn's disease-like ileitis.
        Gut. 2011; 60: 325-333
        • Weiss G.
        Iron in the inflamed gut: another pro-inflammatory hit?.
        Gut. 2011; 60: 287-288
        • Ananthakrishnan A.N.
        • Khalili H.
        • Song M.
        • et al.
        High school diet and risk of Crohn's disease and ulcerative colitis.
        Inflamm Bowel Dis. 2015; 21: 2311-2319
        • Patel B.
        • Schutte R.
        • Sporns P.
        • et al.
        Potato glycoalkaloids adversely affect intestinal permeability and aggravate inflammatory bowel disease.
        Inflamm Bowel Dis. 2002; 8: 340-346
        • Chng S.H.
        • Kundu P.
        • Dominguez-Brauer C.
        • et al.
        Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity.
        Sci Rep. 2016; 6: 23820
        • Zelante T.
        • Iannitti R.G.
        • Cunha C.
        • et al.
        Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22.
        Immunity. 2013; 39: 372-385
        • Jaeger C.
        • Tischkau S.A.
        Role of aryl hydrocarbon receptor in circadian clock disruption and metabolic dysfunction.
        Environ Health Insights. 2016; 10: 133-141
        • Lee J.Y.
        • Zhao L.
        • Hwang D.H.
        Modulation of pattern recognition receptor-mediated inflammation and risk of chronic diseases by dietary fatty acids.
        Nutr Rev. 2010; 68: 38-61
        • Hwang D.H.
        • Kim J.A.
        • Lee J.Y.
        Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid.
        Eur J Pharmacol. 2016; 785: 24-35
        • Round J.L.
        • Mazmanian S.K.
        The gut microbiota shapes intestinal immune responses during health and disease.
        Nat Rev Immunol. 2009; 9: 313-323
        • Elinav E.
        • Strowig T.
        • Kau A.L.
        • et al.
        NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis.
        Cell. 2011; 145: 745-757
        • Dheer R.
        • Santaolalla R.
        • Davies J.M.
        • et al.
        Intestinal epithelial Toll-like receptor 4 signaling affects epithelial function and colonic microbiota and promotes a risk for transmissible colitis.
        Infect Immun. 2016; 84: 798-810
        • Gevers D.
        • Kugathasan S.
        • Denson L.A.
        • et al.
        The treatment-naive microbiome in new-onset Crohn's disease.
        Cell Host Microbe. 2014; 15: 382-392
        • Gruber L.
        • Kisling S.
        • Lichti P.
        • et al.
        High fat diet accelerates pathogenesis of murine Crohn's disease-like ileitis independently of obesity.
        PLoS One. 2013; 8: e71661
        • Paik J.
        • Fierce Y.
        • Treuting P.M.
        • et al.
        High-fat diet-induced obesity exacerbates inflammatory bowel disease in genetically susceptible Mdr1a-/- male mice.
        J Nutr. 2013; 143: 1240-1247
        • van der Logt E.M.
        • Blokzijl T.
        • van der Meer R.
        • et al.
        Westernized high-fat diet accelerates weight loss in dextran sulfate sodium-induced colitis in mice, which is further aggravated by supplementation of heme.
        J Nutr Biochem. 2013; 24: 1159-1165
        • Ma X.
        • Torbenson M.
        • Hamad A.R.
        • et al.
        High-fat diet modulates non-CD1d-restricted natural killer T cells and regulatory T cells in mouse colon and exacerbates experimental colitis.
        Clin Exp Immunol. 2008; 151: 130-138
        • Davies J.M.
        • Hua H.U.
        • Dheer R.
        • et al.
        Stool phospholipid signature is altered by diet and tumors.
        PLoS One. 2014; 9: e114352
        • Devkota S.
        • Wang Y.
        • Musch M.W.
        • et al.
        Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice.
        Nature. 2012; 487: 104-108
        • Kevans D.
        • Turpin W.
        • Madsen K.
        • et al.
        Determinants of intestinal permeability in healthy first-degree relatives of individuals with Crohn's disease.
        Inflamm Bowel Dis. 2015; 21: 879-887
        • Kevans D.
        • Silverberg M.S.
        • Borowski K.
        • et al.
        IBD genetic risk profile in healthy first-degree relatives of Crohn's disease patients.
        J Crohns Colitis. 2016; 10: 209-215
        • Williams Turpin O.K.
        • Shestopaloff K.
        • Espin-Garcia O.
        • et al.
        86 Associations of environmental exposures with the composition and diversity of the human gut microbiome in healthy first degree relatives (FDR) of Crohn's patients.
        Gastroenterology. 2016; 150: S21-S22

      Supplementary References

        • Limdi J.K.
        • Aggarwal D.
        • McLaughlin J.T.
        Dietary practices and beliefs in patients with inflammatory bowel disease.
        Inflamm Bowel Dis. 2016; 22: 164-170
        • Zallot C.
        • Quilliot D.
        • Chevaux J.B.
        • et al.
        Dietary beliefs and behavior among inflammatory bowel disease patients.
        Inflamm Bowel Dis. 2013; 19: 66-72
        • Tanaka M.
        • Kawakami A.
        • Iwao Y.
        • et al.
        Coping strategies for possible flare-ups and their perceived effectiveness in patients with inflammatory bowel disease.
        Gastroenterol Nurs. 2016; 39: 42-47
        • Jowett S.L.
        • Seal C.J.
        • Pearce M.S.
        • et al.
        Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study.
        Gut. 2004; 53: 1479-1484
        • Magee E.A.
        • Edmond L.M.
        • Tasker S.M.
        • et al.
        Associations between diet and disease activity in ulcerative colitis patients using a novel method of data analysis.
        Nutr J. 2005; 4: 7
        • Tanaka M.
        • Iwao Y.
        • Sasaki S.
        • et al.
        Moderate dietary temperance effectively prevents relapse of Crohn disease: a prospective study of patients in remission.
        Gastroenterol Nurs. 2007; 30: 202-210
        • Guerreiro C.S.
        • Ferreira P.
        • Tavares L.
        • et al.
        Fatty acids, IL6, and TNFalpha polymorphisms: an example of nutrigenetics in Crohn's disease.
        Am J Gastroenterol. 2009; 104: 2241-2249
        • Ferreira P.
        • Cravo M.
        • Guerreiro C.S.
        • et al.
        Fat intake interacts with polymorphisms of caspase9, Fas ligand and PPARgamma apoptotic genes in modulating Crohn's disease activity.
        Clin Nutr. 2010; 29: 819-823
        • Reifen R.
        • Matas Z.
        • Zeidel L.
        • et al.
        Iron supplementation may aggravate inflammatory status of colitis in a rat model.
        Dig Dis Sci. 2000; 45: 394-397
        • Carrier J.
        • Aghdassi E.
        • Cullen J.
        • et al.
        Iron supplementation increases disease activity and vitamin E ameliorates the effect in rats with dextran sulfate sodium-induced colitis.
        J Nutr. 2002; 132: 3146-3150
        • Reifen R.
        • Nissenkorn A.
        • Matas Z.
        • et al.
        5-ASA and lycopene decrease the oxidative stress and inflammation induced by iron in rats with colitis.
        J Gastroenterol. 2004; 39: 514-519
        • Le Leu R.K.
        • Young G.P.
        • Hu Y.
        • et al.
        Dietary red meat aggravates dextran sulfate sodium-induced colitis in mice whereas resistant starch attenuates inflammation.
        Dig Dis Sci. 2013; 58: 3475-3482
        • Schepens M.A.
        • Vink C.
        • Schonewille A.J.
        • et al.
        Dietary heme adversely affects experimental colitis in rats, despite heat-shock protein induction.
        Nutrition. 2011; 27: 590-597
        • Yeoh B.S.
        • Aguilera Olvera R.
        • Singh V.
        • et al.
        Epigallocatechin-3-gallate inhibition of myeloperoxidase and its counter-regulation by dietary iron and lipocalin 2 in murine model of gut inflammation.
        Am J Pathol. 2016; 186: 912-926
        • Lee T.
        • Clavel T.
        • Smirnov K.
        • et al.
        Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD.
        Gut. 2016;
        • Dogan B.
        • Suzuki H.
        • Herlekar D.
        • et al.
        Inflammation-associated adherent-invasive Escherichia coli are enriched in pathways for use of propanediol and iron and M-cell translocation.
        Inflamm Bowel Dis. 2014; 20: 1919-1932
        • de Silva A.D.
        • Tsironi E.
        • Feakins R.M.
        • et al.
        Efficacy and tolerability of oral iron therapy in inflammatory bowel disease: a prospective, comparative trial.
        Aliment Pharmacol Ther. 2005; 22: 1097-1105
        • Hartman C.
        • Marderfeld L.
        • Davidson K.
        • et al.
        Food intake adequacy in children and adolescents with inflammatory bowel disease.
        J Pediatr Gastroenterol Nutr. 2016; 63: 437-444
        • Lochs H.
        • Dejong C.
        • Hammarqvist F.
        • et al.
        ESPEN guidelines on enteral nutrition: gastroenterology.
        Clin Nutr. 2006; 25: 260-274
        • Sandhu B.K.
        • Fell J.M.
        • Beattie R.M.
        • et al.
        Guidelines for the management of inflammatory bowel disease in children in the United Kingdom.
        J Pediatr Gastroenterol Nutr. 2010; 50: S1-S13
        • Caprilli R.
        • Gassull M.A.
        • Escher J.C.
        • et al.
        European evidence based consensus on the diagnosis and management of Crohn's disease: special situations.
        Gut. 2006; 55: i36-58
        • Borrelli O.
        • Cordischi L.
        • Cirulli M.
        • et al.
        Polymeric diet alone versus corticosteroids in the treatment of active pediatric Crohn's disease: a randomized controlled open-label trial.
        Clin Gastroenterol Hepatol. 2006; 4: 744-753
        • Grover Z.
        • Muir R.
        • Lewindon P.
        Exclusive enteral nutrition induces early clinical, mucosal and transmural remission in paediatric Crohn's disease.
        J Gastroenterol. 2014; 49: 638-645
        • Zachos M.
        • Tondeur M.
        • Griffiths A.M.
        Enteral nutritional therapy for induction of remission in Crohn's disease.
        Cochrane Database Syst Rev. 2007; 1: CD000542
        • Takagi S.
        • Utsunomiya K.
        • Kuriyama S.
        • et al.
        Effectiveness of an 'half elemental diet' as maintenance therapy for Crohn's disease: a randomized-controlled trial.
        Aliment Pharmacol Ther. 2006; 24: 1333-1340
        • Nguyen D.L.
        • Palmer L.B.
        • Nguyen E.T.
        • et al.
        Specialized enteral nutrition therapy in Crohn's disease patients on maintenance infliximab therapy: a meta-analysis.
        Therap Adv Gastroenterol. 2015; 8: 168-175
        • Tsertsvadze A.
        • Gurung T.
        • Court R.
        • et al.
        Clinical effectiveness and cost-effectiveness of elemental nutrition for the maintenance of remission in Crohn's disease: a systematic review and meta-analysis.
        Health Technol Assess. 2015; 19: 1-138
        • Alastair F.
        • Emma G.
        • Emma P.
        Nutrition in inflammatory bowel disease.
        JPEN J Parenter Enteral Nutr. 2011; 35: 571-580
        • Gonzalez-Huix F.
        • Fernandez-Banares F.
        • Esteve-Comas M.
        • et al.
        Enteral versus parenteral nutrition as adjunct therapy in acute ulcerative colitis.
        Am J Gastroenterol. 1993; 88: 227-232
        • Lee D.
        • Baldassano R.N.
        • Otley A.R.
        • et al.
        Comparative effectiveness of nutritional and biological therapy in North American children with active Crohn's disease.
        Inflamm Bowel Dis. 2015; 21: 1786-1793
        • Papada E.
        • Kaliora A.C.
        • Gioxari A.
        • et al.
        Anti-inflammatory effect of elemental diets with different fat composition in experimental colitis.
        Br J Nutr. 2014; 111: 1213-1220
        • Kono H.
        • Fujii H.
        • Ogiku M.
        • et al.
        Enteral diets enriched with medium-chain triglycerides and N-3 fatty acids prevent chemically induced experimental colitis in rats.
        Transl Res. 2010; 156: 282-291
        • Cohen A.B.
        • Lee D.
        • Long M.D.
        • et al.
        Dietary patterns and self-reported associations of diet with symptoms of inflammatory bowel disease.
        Dig Dis Sci. 2013; 58: 1322-1328
        • Zallot C.
        • Quilliot D.
        • Chevaux J.B.
        • et al.
        Dietary beliefs and behavior among inflammatory bowel disease patients.
        Inflamm Bowel Dis. 2013; 19: 66-72
        • Gottschall E.
        Breaking the vicious cycle.
        Kirkton Press, Baltimore, ON, Canada1994
        • Hou J.K.
        • Lee D.
        • Lewis J.
        Diet and inflammatory bowel disease: review of patient-targeted recommendations.
        Clin Gastroenterol Hepatol. 2014; 12: 1592-1600
        • Suskind D.L.
        • Wahbeh G.
        • Gregory N.
        • et al.
        Nutritional therapy in pediatric Crohn disease: the specific carbohydrate diet.
        J Pediatr Gastroenterol Nutr. 2014; 58: 87-91
        • Obih C.
        • Wahbeh G.
        • Lee D.
        • et al.
        Specific carbohydrate diet for pediatric inflammatory bowel disease in clinical practice within an academic IBD center.
        Nutrition. 2016; 32: 418-425
        • Cohen S.A.
        • Gold B.D.
        • Oliva S.
        • et al.
        Clinical and mucosal improvement with specific carbohydrate diet in pediatric Crohn disease.
        Pediatr Gastroenterol Nutr. 2014; 59: 516-521
        • Riordan A.M.
        • Hunter J.O.
        • Cowan R.E.
        • et al.
        Treatment of active Crohn's disease by exclusion diet: East Anglian multicentre controlled trial.
        Lancet. 1993; 342: 1131-1134
        • Bartel G.
        • Weiss I.
        • Turetschek K.
        • et al.
        Ingested matter affects intestinal lesions in Crohn's disease.
        Inflamm Bowel Dis. 2008; 14: 374-382
        • Jones V.A.
        • Dickinson R.J.
        • Workman E.
        • et al.
        Crohn's disease: maintenance of remission by diet.
        Lancet. 1985; 2: 177-180
        • Sigall-Boneh R.
        • Pfeffer-Gik T.
        • Segal I.
        • et al.
        Partial enteral nutrition with a Crohn's disease exclusion diet is effective for induction of remission in children and young adults with Crohn's disease.
        Inflamm Bowel Dis. 2014; 20: 1353-1360
        • Rajendran N.
        • Kumar D.
        Food-specific IgG4-guided exclusion diets improve symptoms in Crohn's disease: a pilot study.
        Colorectal Dis. 2011; 13: 1009-1013
        • Chiba M.
        • Abe T.
        • Tsuda H.
        • et al.
        Lifestyle-related disease in Crohn's disease: relapse prevention by a semi-vegetarian diet.
        World J Gastroenterol. 2010; 16: 2484-2495
        • Olendzki B.C.
        • Silverstein T.D.
        • Persuitte G.M.
        • et al.
        An anti-inflammatory diet as treatment for inflammatory bowel disease: a case series report.
        Nutr J. 2014; 13: 5
        • Wagner S.J.
        • Schmidt A.
        • Effenberger M.J.
        • et al.
        Semisynthetic diet ameliorates Crohn's disease-like ileitis in TNFDeltaARE/WT mice through antigen-independent mechanisms of gluten.
        Inflamm Bowel Dis. 2013; 19: 1285-1294
        • Nickerson K.P.
        • McDonald C.
        Crohn's disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin.
        PLoS One. 2012; 7: e52132
        • Gunasekeera V.
        • Mendall M.A.
        • Chan D.
        • et al.
        Treatment of Crohn's disease with an IgG4-guided exclusion diet: a randomized controlled trial.
        Dig Dis Sci. 2016; 61: 1148-1157
        • Truelove S.C.
        Ulcerative colitis provoked by milk.
        Br Med J. 1961; 1: 154-160
        • Florin T.
        • Neale G.
        • Gibson G.R.
        • et al.
        Metabolism of dietary sulphate: absorption and excretion in humans.
        Gut. 1991; 32: 766-773
        • Levine J.
        • Ellis C.J.
        • Furne J.K.
        • et al.
        Fecal hydrogen sulfide production in ulcerative colitis.
        Am J Gastroenterol. 1998; 93: 83-87
        • Magee E.A.
        • Richardson C.J.
        • Hughes R.
        • et al.
        Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans.
        Am J Clin Nutr. 2000; 72: 1488-1494
        • Laue H.
        • Denger K.
        • Cook A.M.
        Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU.
        Appl Environ Microbiol. 1997; 63: 2016-2021
        • Laue H.
        • Cook A.M.
        Biochemical and molecular characterization of taurine:pyruvate aminotransferase from the anaerobe Bilophila wadsworthia.
        Eur J Biochem. 2000; 267: 6841-6848
        • Medani M.
        • Collins D.
        • Docherty N.G.
        • et al.
        Emerging role of hydrogen sulfide in colonic physiology and pathophysiology.
        Inflamm Bowel Dis. 2011; 17: 1620-1625
        • Attene-Ramos M.S.
        • Nava G.M.
        • Muellner M.G.
        • et al.
        DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells.
        Environ Mol Mutagen. 2010; 51: 304-314
        • Attene-Ramos M.S.
        • Wagner E.D.
        • Gaskins H.R.
        • et al.
        Hydrogen sulfide induces direct radical-associated DNA damage.
        Mol Cancer Res. 2007; 5: 455-459
        • Attene-Ramos M.S.
        • Wagner E.D.
        • Plewa M.J.
        • et al.
        Evidence that hydrogen sulfide is a genotoxic agent.
        Mol Cancer Res. 2006; 4: 9-14
        • Roediger W.E.
        • Duncan A.
        • Kapaniris O.
        • et al.
        Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis.
        Gastroenterology. 1993; 104: 802-809
        • Babidge W.
        • Millard S.
        • Roediger W.
        Sulfides impair short chain fatty acid beta-oxidation at acyl-CoA dehydrogenase level in colonocytes: implications for ulcerative colitis.
        Mol Cell Biochem. 1998; 181: 117-124
        • Rey F.E.
        • Gonzalez M.D.
        • Cheng J.
        • et al.
        Metabolic niche of a prominent sulfate-reducing human gut bacterium.
        Proc Natl Acad Sci U S A. 2013; 110: 13582-13587
        • Gibson G.R.
        • Cummings J.H.
        • Macfarlane G.T.
        Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis.
        FEMS Microbiol Lett. 1991; 86: 103-112
        • Pitcher M.C.
        • Beatty E.R.
        • Cummings J.H.
        The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis.
        Gut. 2000; 46: 64-72
        • Fite A.
        • Macfarlane G.T.
        • Cummings J.H.
        • et al.
        Identification and quantitation of mucosal and faecal desulfovibrios using real time polymerase chain reaction.
        Gut. 2004; 53: 523-529
        • Loubinoux J.
        • Bronowicki J.P.
        • Pereira I.A.
        • et al.
        Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases.
        FEMS Microbiol Ecol. 2002; 40: 107-112
        • Edmond L.M.
        • Hopkins M.J.
        • Magee E.A.
        • et al.
        The effect of 5-aminosalicylic acid-containing drugs on sulfide production by sulfate-reducing and amino acid-fermenting bacteria.
        Inflamm Bowel Dis. 2003; 9: 10-17
        • Moore J.
        • Babidge W.
        • Millard S.
        • et al.
        Colonic luminal hydrogen sulfide is not elevated in ulcerative colitis.
        Dig Dis Sci. 1998; 43: 162-165
        • Hou J.K.
        • Lee D.
        • Lewis J.
        Diet and inflammatory bowel disease: review of patient-targeted recommendations.
        Clin Gastroenterol Hepatol. 2014; 12: 1592-1600
        • Gearry R.B.
        • Irving P.M.
        • Barrett J.S.
        • et al.
        Reduction of dietary poorly absorbed short-chain carbohydrates (FODMAPs) improves abdominal symptoms in patients with inflammatory bowel disease-a pilot study.
        J Crohns Colitis. 2009; 3: 8-14
        • Prince A.C.
        • Myers C.E.
        • Joyce T.
        • et al.
        Fermentable carbohydrate restriction (low FODMAP diet) in clinical practice improves functional gastrointestinal symptoms in patients with inflammatory bowel disease.
        Inflamm Bowel Dis. 2016; 22: 1129-1136
        • Gibson P.R.
        • Varney J.
        • Malakar S.
        • et al.
        Food components and irritable bowel syndrome.
        Gastroenterology. 2015; 148: 1158-1174.e4
        • Halmos E.P.
        • Christophersen C.T.
        • Bird A.R.
        • et al.
        Diets that differ in their FODMAP content alter the colonic luminal microenvironment.
        Gut. 2015; 64: 93-100
        • Halmos E.P.
        • Christophersen C.T.
        • Bird A.R.
        • et al.
        Consistent prebiotic effect on gut microbiota with altered FODMAP intake in patients with Crohn's disease: a randomised, controlled cross-over trial of well-defined diets.
        Clin Transl Gastroenterol. 2016; 7: e164
        • Wong C.
        • Harris P.J.
        • Ferguson L.R.
        Potential benefits of dietary fibre intervention in inflammatory bowel disease.
        Int J Mol Sci. 2016; 17: 6
        • Slavin J.L.
        Position of the American Dietetic Association: health implications of dietary fiber.
        J Am Diet Assoc. 2008; 108: 1716-1731
      1. Crohn's and Colitis Foundation of America. Diet, nutrition, and inflammatory bowel disease. 2013. http://www.ccfa.org/assets/pdfs/diet-nutrition-2013.pdf. Accessed December 22, 2016.

      2. World Gastroenterology Organisation. World Gastroenterology Organisation global guidelines inflammatory bowel disease. 2015. http://www.worldgastroenterology.org/UserFiles/file/guidelines/inflammatory-bowel-disease-english-2015-update.pdf. Accessed December 22, 2016.

        • Brotherton C.S.
        • Martin C.A.
        • Long M.D.
        • et al.
        Avoidance of fiber is associated with greater risk of Crohn's disease flare in a 6-month period.
        Clin Gastroenterol Hepatol. 2016; 14: 1130-1136
        • Wedlake L.
        • Slack N.
        • Andreyev H.J.
        • et al.
        Fiber in the treatment and maintenance of inflammatory bowel disease: a systematic review of randomized controlled trials.
        Inflamm Bowel Dis. 2014; 20: 576-586
        • Benjamin J.L.
        • Hedin C.R.
        • Koutsoumpas A.
        • et al.
        Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn's disease.
        Gut. 2011; 60: 923-929
        • Vinolo M.A.
        • Rodrigues H.G.
        • Nachbar R.T.
        • et al.
        Regulation of inflammation by short chain fatty acids.
        Nutrients. 2011; 3: 858-876
        • Kim S.
        • Kim J.H.
        • Park B.O.
        • et al.
        Perspectives on the therapeutic potential of short-chain fatty acid receptors.
        BMB Rep. 2014; 47: 173-178
        • Huda-Faujan N.
        • Abdulamir A.S.
        • Fatimah A.B.
        • et al.
        The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects.
        Open Biochem J. 2010; 4: 53-58
        • Hague A.
        • Singh B.
        • Paraskeva C.
        Butyrate acts as a survival factor for colonic epithelial cells: further fuel for the in vivo versus in vitro debate.
        Gastroenterology. 1997; 112: 1036-1040
        • Ritzhaupt A.
        • Ellis A.
        • Hosie K.B.
        • et al.
        The characterization of butyrate transport across pig and human colonic luminal membrane.
        J Physiol. 1998; 507: 819-830
        • Macfarlane S.
        • Macfarlane G.T.
        Regulation of short-chain fatty acid production.
        Proc Nutr Soc. 2003; 62: 67-72
        • Barcenilla A.
        • Pryde S.E.
        • Martin J.C.
        • et al.
        Phylogenetic relationships of butyrate-producing bacteria from the human gut.
        Appl Environ Microbiol. 2000; 66: 1654-1661
        • Pituch-Zdanowska A.
        • Banaszkiewicz A.
        • Albrecht P.
        The role of dietary fibre in inflammatory bowel disease.
        Prz Gastroenterol. 2015; 10: 135-141
        • Schwiertz A.
        • Le Blay G.
        • Blaut M.
        Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes.
        Appl Environ Microbiol. 2000; 66: 375-382
        • Hold G.L.
        • Schwiertz A.
        • Aminov R.I.
        • et al.
        Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces.
        Appl Environ Microbiol. 2003; 69: 4320-4324
        • Aminov R.I.
        • Walker A.W.
        • Duncan S.H.
        • et al.
        Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale.
        Appl Environ Microbiol. 2006; 72: 6371-6376
        • Louis P.
        • Hold G.L.
        • Flint H.J.
        The gut microbiota, bacterial metabolites and colorectal cancer.
        Nat Rev Microbiol. 2014; 12: 661-672
        • Wu G.D.
        • Compher C.
        • Chen E.Z.
        • et al.
        Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production.
        Gut. 2016; 65: 63-72
        • Brown A.J.
        • Goldsworthy S.M.
        • Barnes A.A.
        • et al.
        The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids.
        J Biol Chem. 2003; 278: 11312-11319
        • Le Poul E.
        • Loison C.
        • Struyf S.
        • et al.
        Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation.
        J Biol Chem. 2003; 278: 25481-25489
        • Ganapathy V.
        • Thangaraju M.
        • Prasad P.D.
        • et al.
        Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host.
        Curr Opin Pharmacol. 2013; 13: 869-874
        • Maslowski K.M.
        • Vieira A.T.
        • Ng A.
        • et al.
        Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.
        Nature. 2009; 461: 1282-1286
        • Suzuki T.
        • Yoshida S.
        • Hara H.
        Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability.
        Br J Nutr. 2008; 100: 297-305
        • Macia L.
        • Tan J.
        • Vieira A.T.
        • et al.
        Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome.
        Nat Commun. 2015; 6: 6734
        • Koleva P.T.
        • Valcheva R.S.
        • Sun X.
        • et al.
        Inulin and fructo-oligosaccharides have divergent effects on colitis and commensal microbiota in HLA-B27 transgenic rats.
        Br J Nutr. 2012; 108: 1633-1643
        • Bassaganya-Riera J.
        • DiGuardo M.
        • Viladomiu M.
        • et al.
        Soluble fibers and resistant starch ameliorate disease activity in interleukin-10-deficient mice with inflammatory bowel disease.
        J Nutr. 2011; 141: 1318-1325
        • Capitan-Canadas F.
        • Ocon B.
        • Aranda C.J.
        • et al.
        Fructooligosaccharides exert intestinal anti-inflammatory activity in the CD4+ CD62L+ T cell transfer model of colitis in C57BL/6J mice.
        Eur J Nutr. 2016; 55: 1445-1454
        • Scarminio V.
        • Fruet A.C.
        • Witaicenis A.
        • et al.
        Dietary intervention with green dwarf banana flour (Musa sp AAA) prevents intestinal inflammation in a trinitrobenzenesulfonic acid model of rat colitis.
        Nutr Res. 2012; 32: 202-209
        • Videla S.
        • Vilaseca J.
        • Antolin M.
        • et al.
        Dietary inulin improves distal colitis induced by dextran sodium sulfate in the rat.
        Am J Gastroenterol. 2001; 96: 1486-1493
        • Rumi G.
        • Tsubouchi R.
        • Okayama M.
        • et al.
        Protective effect of lactulose on dextran sulfate sodium-induced colonic inflammation in rats.
        Dig Dis Sci. 2004; 49: 1466-1472
        • Hoentjen F.
        • Welling G.W.
        • Harmsen H.J.
        • et al.
        Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation.
        Inflamm Bowel Dis. 2005; 11: 977-985
        • Joo E.
        • Yamane S.
        • Hamasaki A.
        • et al.
        Enteral supplement enriched with glutamine, fiber, and oligosaccharide attenuates experimental colitis in mice.
        Nutrition. 2013; 29: 549-555
        • Koleva P.
        • Ketabi A.
        • Valcheva R.
        • et al.
        Chemically defined diet alters the protective properties of fructo-oligosaccharides and isomalto-oligosaccharides in HLA-B27 transgenic rats.
        PLoS One. 2014; 9: e111717
        • Scheppach W.
        • Sommer H.
        • Kirchner T.
        • et al.
        Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis.
        Gastroenterology. 1992; 103: 51-56
        • Vernia P.
        • Marcheggiano A.
        • Caprilli R.
        • et al.
        Short-chain fatty acid topical treatment in distal ulcerative colitis.
        Aliment Pharmacol Ther. 1995; 9: 309-313
        • Steinhart A.H.
        • Hiruki T.
        • Brzezinski A.
        • et al.
        Treatment of left-sided ulcerative colitis with butyrate enemas: a controlled trial.
        Aliment Pharmacol Ther. 1996; 10: 729-736
        • Calder P.C.
        Polyunsaturated fatty acids and inflammation.
        Biochem Soc Trans. 2005; 33: 423-427
        • Feagan B.G.
        • Sandborn W.J.
        • Mittmann U.
        • et al.
        Omega-3 free fatty acids for the maintenance of remission in Crohn disease: the EPIC Randomized Controlled Trials.
        JAMA. 2008; 299: 1690-1697
        • de Silva P.S.
        • Olsen A.
        • Christensen J.
        • et al.
        An association between dietary arachidonic acid, measured in adipose tissue, and ulcerative colitis.
        Gastroenterology. 2010; 139: 1912-1917
        • Matsunaga H.
        • Hokari R.
        • Kurihara C.
        • et al.
        Omega-3 polyunsaturated fatty acids ameliorate the severity of ileitis in the senescence accelerated mice (SAM)P1/Yit mice model.
        Clin Exp Immunol. 2009; 158: 325-333
        • Tyagi A.
        • Kumar U.
        • Reddy S.
        • et al.
        Attenuation of colonic inflammation by partial replacement of dietary linoleic acid with alpha-linolenic acid in a rat model of inflammatory bowel disease.
        Br J Nutr. 2012; 108: 1612-1622
        • Tyagi A.
        • Kumar U.
        • Santosh V.S.
        • et al.
        Partial replacement of dietary linoleic acid with long chain n-3 polyunsaturated fatty acids protects against dextran sulfate sodium-induced colitis in rats.
        Prostaglandins Leukot Essent Fatty Acids. 2014; 91: 289-297
        • Borniquel S.
        • Jadert C.
        • Lundberg J.O.
        Dietary conjugated linoleic acid activates PPARgamma and the intestinal trefoil factor in SW480 cells and mice with dextran sulfate sodium-induced colitis.
        J Nutr. 2012; 142: 2135-2140
        • Ibrahim A.
        • Aziz M.
        • Hassan A.
        • et al.
        Dietary alpha-linolenic acid-rich formula reduces adhesion molecules in rats with experimental colitis.
        Nutrition. 2012; 28: 799-802
        • Mbodji K.
        • Charpentier C.
        • Guerin C.
        • et al.
        Adjunct therapy of n-3 fatty acids to 5-ASA ameliorates inflammatory score and decreases NF-kappaB in rats with TNBS-induced colitis.
        J Nutr Biochem. 2013; 24: 700-705
        • Ferrucci L.
        • Cherubini A.
        • Bandinelli S.
        • et al.
        Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers.
        J Clin Endocrinol Metab. 2006; 91: 439-446
        • Ghosh S.
        • DeCoffe D.
        • Brown K.
        • et al.
        Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis.
        PLoS One. 2013; 8: e55468
        • Reifen R.
        • Karlinsky A.
        • Stark A.H.
        • et al.
        alpha-Linolenic acid (ALA) is an anti-inflammatory agent in inflammatory bowel disease.
        J Nutr Biochem. 2015; 26: 1632-1640
        • Takashima T.
        • Sakata Y.
        • Iwakiri R.
        • et al.
        Feeding with olive oil attenuates inflammation in dextran sulfate sodium-induced colitis in rat.
        J Nutr Biochem. 2014; 25: 186-192
        • Sanchez-Fidalgo S.
        • Cardeno A.
        • Sanchez-Hidalgo M.
        • et al.
        Dietary extra virgin olive oil polyphenols supplementation modulates DSS-induced chronic colitis in mice.
        J Nutr Biochem. 2013; 24: 1401-1413
        • Mouli V.P.
        • Ananthakrishnan A.N.
        Review article: vitamin D and inflammatory bowel diseases.
        Aliment Pharmacol Ther. 2014; 39: 125-136
        • Nerich V.
        • Jantchou P.
        • Boutron-Ruault M.C.
        • et al.
        Low exposure to sunlight is a risk factor for Crohn's disease.
        Aliment Pharmacol Ther. 2011; 33: 940-945
        • Ananthakrishnan A.N.
        • Khalili H.
        • Higuchi L.M.
        • et al.
        Higher predicted vitamin D status is associated with reduced risk of Crohn's disease.
        Gastroenterology. 2012; 142: 482-489
        • Jorgensen S.P.
        • Agnholt J.
        • Glerup H.
        • et al.
        Clinical trial: vitamin D3 treatment in Crohn's disease - a randomized double-blind placebo-controlled study.
        Aliment Pharmacol Ther. 2010; 32: 377-383
        • Cantorna M.T.
        • Munsick C.
        • Bemiss C.
        • et al.
        1,25-Dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease.
        J Nutr. 2000; 130: 2648-2652
        • Daniel C.
        • Radeke H.H.
        • Sartory N.A.
        • et al.
        The new low calcemic vitamin D analog 22-ene-25-oxa-vitamin D prominently ameliorates T helper cell type 1-mediated colitis in mice.
        J Pharmacol Exp Ther. 2006; 319: 622-631
        • Garg M.
        • Rosella O.
        • Lubel J.S.
        • et al.
        Association of circulating vitamin D concentrations with intestinal but not systemic inflammation in inflammatory bowel disease.
        Inflamm Bowel Dis. 2013; 19: 2634-2643
        • Liu W.
        • Chen Y.
        • Golan M.A.
        • et al.
        Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis.
        J Clin Invest. 2013; 123: 3983-3996
        • Ooi J.H.
        • Li Y.
        • Rogers C.J.
        • et al.
        Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis.
        J Nutr. 2013; 143: 1679-1686
        • Assa A.
        • Vong L.
        • Pinnell L.J.
        • et al.
        Vitamin D deficiency predisposes to adherent-invasive Escherichia coli-induced barrier dysfunction and experimental colonic injury.
        Inflamm Bowel Dis. 2015; 21: 297-306
        • Golan M.A.
        • Liu W.
        • Shi Y.
        • et al.
        Transgenic expression of vitamin D receptor in gut epithelial cells ameliorates spontaneous colitis caused by interleukin-10 deficiency.
        Dig Dis Sci. 2015; 60: 1941-1947
        • Jin D.
        • Wu S.
        • Zhang Y.G.
        • et al.
        Lack of vitamin D receptor causes dysbiosis and changes the functions of the murine intestinal microbiome.
        Clin Ther. 2015; 37: 996-1009 e7
        • Li Y.C.
        • Chen Y.
        • Du J.
        Critical roles of intestinal epithelial vitamin D receptor signaling in controlling gut mucosal inflammation.
        J Steroid Biochem Mol Biol. 2015; 148: 179-183
        • Ryz N.R.
        • Lochner A.
        • Bhullar K.
        • et al.
        Dietary vitamin D3 deficiency alters intestinal mucosal defense and increases susceptibility to Citrobacter rodentium-induced colitis.
        Am J Physiol Gastrointest Liver Physiol. 2015; 309: G730-G742
        • Wu S.
        • Yoon S.
        • Zhang Y.G.
        • et al.
        Vitamin D receptor pathway is required for probiotic protection in colitis.
        Am J Physiol Gastrointest Liver Physiol. 2015; 309: G341-G349
        • Wu S.
        • Zhang Y.G.
        • Lu R.
        • et al.
        Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis.
        Gut. 2015; 64: 1082-1094
        • Sun J.
        VDR/vitamin D receptor regulates autophagic activity through ATG16L1.
        Autophagy. 2016; 12: 1057-1058
        • Olsen K.S.
        • Aksnes L.
        • Froyland L.
        • et al.
        Vitamin D status and PUFA ratios in a national representative cross-section of healthy, middle-aged Norwegian women-the Norwegian Women and Cancer Post-Genome Cohort.
        Scand J Public Health. 2014; 42: 814-820
        • Meckel K.
        • Li Y.C.
        • Lim J.
        • et al.
        Serum 25-hydroxyvitamin D concentration is inversely associated with mucosal inflammation in patients with ulcerative colitis.
        Am J Clin Nutr. 2016; 104: 113-120
        • Du J.
        • Chen Y.
        • Shi Y.
        • et al.
        1,25-Dihydroxyvitamin D protects intestinal epithelial barrier by regulating the myosin light chain kinase signaling pathway.
        Inflamm Bowel Dis. 2015; 21: 2495-2506
        • Simpson H.L.
        • Campbell B.J.
        • Rhodes J.M.
        IBD: microbiota manipulation through diet and modified bacteria.
        Dig Dis. 2014; 32: 18-25
        • Chen Y.
        • Du J.
        • Zhang Z.
        • et al.
        MicroRNA-346 mediates tumor necrosis factor alpha-induced downregulation of gut epithelial vitamin D receptor in inflammatory bowel diseases.
        Inflamm Bowel Dis. 2014; 20: 1910-1918
        • Zhao H.
        • Zhang H.
        • Wu H.
        • et al.
        Protective role of 1,25(OH)2 vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice.
        BMC Gastroenterol. 2012; 12: 57
        • Kong J.
        • Zhang Z.
        • Musch M.W.
        • et al.
        Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier.
        Am J Physiol Gastrointest Liver Physiol. 2008; 294: G208-G216
        • Binion D.G.
        • Otterson M.F.
        • Rafiee P.
        Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition.
        Gut. 2008; 57: 1509-1517
        • Billerey-Larmonier C.
        • Uno J.K.
        • Larmonier N.
        • et al.
        Protective effects of dietary curcumin in mouse model of chemically induced colitis are strain dependent.
        Inflamm Bowel Dis. 2008; 14: 780-793
        • Ukil A.
        • Maity S.
        • Karmakar S.
        • et al.
        Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis.
        Br J Pharmacol. 2003; 139: 209-218
        • Salh B.
        • Assi K.
        • Templeman V.
        • et al.
        Curcumin attenuates DNB-induced murine colitis.
        Am J Physiol Gastrointest Liver Physiol. 2003; 285: G235-G243
        • Sugimoto K.
        • Hanai H.
        • Tozawa K.
        • et al.
        Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice.
        Gastroenterology. 2002; 123: 1912-1922
        • Binion D.G.
        • Heidemann J.
        • Li M.S.
        • et al.
        Vascular cell adhesion molecule-1 expression in human intestinal microvascular endothelial cells is regulated by PI 3-kinase/Akt/MAPK/NF-kappaB: inhibitory role of curcumin.
        Am J Physiol Gastrointest Liver Physiol. 2009; 297: G259-G268
        • Epstein J.
        • Docena G.
        • MacDonald T.T.
        • et al.
        Curcumin suppresses p38 mitogen-activated protein kinase activation, reduces IL-1beta and matrix metalloproteinase-3 and enhances IL-10 in the mucosa of children and adults with inflammatory bowel disease.
        Br J Nutr. 2010; 103: 824-832
        • Topcu-Tarladacalisir Y.
        • Akpolat M.
        • Uz Y.H.
        • et al.
        Effects of curcumin on apoptosis and oxidoinflammatory regulation in a rat model of acetic acid-induced colitis: the roles of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase.
        J Med Food. 2013; 16: 296-305
        • Aggarwal B.B.
        • Gupta S.C.
        • Sung B.
        Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers.
        Br J Pharmacol. 2013; 169: 1672-1692
        • Midura-Kiela M.T.
        • Radhakrishnan V.M.
        • Larmonier C.B.
        • et al.
        Curcumin inhibits interferon-gamma signaling in colonic epithelial cells.
        Am J Physiol Gastrointest Liver Physiol. 2012; 302: G85-G96
        • Bereswill S.
        • Munoz M.
        • Fischer A.
        • et al.
        Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation.
        PLoS One. 2010; 5: e15099
        • Nones K.
        • Dommels Y.E.
        • Martell S.
        • et al.
        The effects of dietary curcumin and rutin on colonic inflammation and gene expression in multidrug resistance gene-deficient (mdr1a-/-) mice, a model of inflammatory bowel diseases.
        Br J Nutr. 2009; 101: 169-181
        • McFadden R.M.
        • Larmonier C.B.
        • Shehab K.W.
        • et al.
        The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention.
        Inflamm Bowel Dis. 2015; 21: 2483-2494
        • Lang A.
        • Salomon N.
        • Wu J.C.
        • et al.
        Curcumin in combination with mesalamine induces remission in patients with mild-to-moderate ulcerative colitis in a randomized controlled trial.
        Clin Gastroenterol Hepatol. 2015; 13: 1444-1449.e1
        • Hanai H.
        • Iida T.
        • Takeuchi K.
        • et al.
        Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial.
        Clin Gastroenterol Hepatol. 2006; 4: 1502-1506
        • Holt P.R.
        Curcumin for inflammatory bowel disease: a caution.
        Clin Gastroenterol Hepatol. 2016; 14: 168
        • Chassaing B.
        • Koren O.
        • Goodrich J.K.
        • et al.
        Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome.
        Nature. 2015; 519: 92-96
        • Walker A.W.
        • Duncan S.H.
        • McWilliam Leitch E.C.
        • et al.
        pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon.
        Appl Environ Microbiol. 2005; 71: 3692-3700
        • Cummings J.H.
        • Macfarlane G.T.
        The control and consequences of bacterial fermentation in the human colon.
        J Appl Bacteriol. 1991; 70: 443-459
        • McBain A.J.
        • Macfarlane G.T.
        Investigations of bifidobacterial ecology and oligosaccharide metabolism in a three-stage compound continuous culture system.
        Scand J Gastroenterol Suppl. 1997; 222: 32-40
        • Louis P.
        • Flint H.J.
        Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.
        FEMS Microbiol Lett. 2009; 294: 1-8
        • Gibson P.R.
        • Shepherd S.J.
        Evidence-based dietary management of functional gastrointestinal symptoms: the FODMAP approach.
        J Gastroenterol Hepatol. 2010; 25: 252-258
        • Eaton S.B.
        • Konner M.
        Paleolithic nutrition. A consideration of its nature and current implications.
        N Engl J Med. 1985; 312: 283-289
        • Parish C.
        Low residue vs. low fiber diets in inflammatory bowel disease: evidence to support vs. habit?.
        Pract Gastroenterol. 2015; 143: 50-57
        • Vannice G.
        • Rasmussen H.
        Position of the academy of nutrition and dietetics: dietary fatty acids for healthy adults.
        J Acad Nutr Diet. 2014; 114: 136-153
        • Millen B.E.
        • Abrams S.
        • Adams-Campbell L.
        • et al.
        The 2015 Dietary Guidelines Advisory Committee Scientific Report: development and major conclusions.
        Adv Nutr. 2016; 7: 438-444