Advertisement

Nutrients, Foods, and Colorectal Cancer Prevention

  • Mingyang Song
    Affiliations
    Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts

    Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
    Search for articles by this author
  • Wendy S. Garrett
    Affiliations
    Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts

    Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts

    Department of Medicine, Harvard Medical School, Boston, Massachusetts

    Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
    Search for articles by this author
  • Andrew T. Chan
    Correspondence
    Reprint requests Address requests for reprints to: Andrew T. Chan, MD, MPH, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114. fax: (617) 724-6832.
    Affiliations
    Department of Medicine, Harvard Medical School, Boston, Massachusetts

    Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts

    Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
    Search for articles by this author
Published:January 06, 2015DOI:https://doi.org/10.1053/j.gastro.2014.12.035
      Diet has an important role in the development of colorectal cancer. In the past few decades, findings from extensive epidemiologic and experimental investigations have linked consumption of several foods and nutrients to the risk of colorectal neoplasia. Calcium, fiber, milk, and whole grains have been associated with a lower risk of colorectal cancer, and red meat and processed meat have been associated with an increased risk. There is substantial evidence for the potential chemopreventive effects of vitamin D, folate, fruits, and vegetables. Nutrients and foods also may interact, as a dietary pattern, to influence colorectal cancer risk. Diet likely influences colorectal carcinogenesis through several interacting mechanisms. These include the direct effects on immune responsiveness and inflammation, and the indirect effects of overnutrition and obesity—risk factors for colorectal cancer. Emerging evidence also implicates the gut microbiota as an important effector in the relationship between diet and cancer. Dietary modification therefore has the promise of reducing colorectal cancer incidence.

      Keywords

      Abbreviations used in this paper:

      25(OH)D (25-hydroxyvitamin D), CLA (conjugated linoleic acid), CRC (colorectal cancer), HCA (heterocyclic amine), ITC (isothiocyanate), MTHFR (methylenetetrahydrofolate reductase), NOC (N-nitroso compound), NPC (National Prevention of Cancer), PUFA (polyunsaturated fatty acid), RCT (randomized clinical trial), SCFA (short-chain fatty acid), VDR (vitamin D receptor), WHI (Women’s Health Initiative)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ferlay J.
        • Soerjomataram I.
        • Ervik M.
        • et al.
        Cancer incidence and mortality worldwide: IARC CancerBase no. 11 (online). GLOBOCAN 2012 v1.0.
        International Agency for Research on Cancer, Lyon, France2013
        • U.S. Preventive Services Task Force
        Screening for colorectal cancer: U.S. Preventive Services Task Force recommendation statement.
        Ann Intern Med. 2008; 149: 627-637
        • Zauber A.G.
        • Lansdorp-Vogelaar I.
        • Knudsen A.B.
        • et al.
        Evaluating test strategies for colorectal cancer screening: a decision analysis for the U.S. Preventive Services Task Force.
        Ann Intern Med. 2008; 149: 659-669
        • Holme O.
        • Loberg M.
        • Kalager M.
        • et al.
        Effect of flexible sigmoidoscopy screening on colorectal cancer incidence and mortality: a randomized clinical trial.
        JAMA. 2014; 312: 606-615
        • Gupta S.
        • Sussman D.A.
        • Doubeni C.A.
        • et al.
        Challenges and possible solutions to colorectal cancer screening for the underserved.
        J Natl Cancer Inst. 2014; 106: dju032
        • Doll R.
        • Peto R.
        The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today.
        J Natl Cancer Inst. 1981; 66: 1191-1308
      1. World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project: Keeping the science current. Colorectal Cancer 2011 Report: Food, nutrition, physical activity, and the prevention of colorectal cancer. Available at: http://www.dietandcancerreport.org/cancer_resource_center/downloads/cu/Colorectal-Cancer-2011-Report.pdf. Accessed March 18, 2015.

        • World Cancer Research Fund/American Institute for Cancer Research
        Food, nutrition, physical activity, and the prevention of cancer: a global perspective.
        AICR, Washington, DC2007
        • Thomas D.
        Gene–environment-wide association studies: emerging approaches.
        Nat Rev Genet. 2010; 11: 259-272
        • de la Chapelle A.
        Genetic predisposition to colorectal cancer.
        Nat Rev Cancer. 2004; 4: 769-780
        • Herceg Z.
        Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors.
        Mutagenesis. 2007; 22: 91-103
        • Willett W.
        Nutrition and cancer: the search continues.
        Nutr Cancer. 2008; 60: 557-559
        • Martinez M.E.
        • Marshall J.R.
        • Giovannucci E.
        Diet and cancer prevention: the roles of observation and experimentation.
        Nat Rev Cancer. 2008; 8: 694-703
        • Yamauchi M.
        • Morikawa T.
        • Kuchiba A.
        • et al.
        Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum.
        Gut. 2012; 61: 847-854
        • Ogino S.
        • Chan A.T.
        • Fuchs C.S.
        • et al.
        Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field.
        Gut. 2011; 60: 397-411
        • Santarelli R.L.
        • Pierre F.
        • Corpet D.E.
        Processed meat and colorectal cancer: a review of epidemiologic and experimental evidence.
        Nutr Cancer. 2008; 60: 131-144
        • Perdigon G.
        • de Moreno de LeBlanc A.
        • Valdez J.
        • et al.
        Role of yoghurt in the prevention of colon cancer.
        Eur J Clin Nutr. 2002; 56: S65-S68
        • Giovannucci E.
        Epidemiologic studies of folate and colorectal neoplasia: a review.
        J Nutr. 2002; 132: 2350S-2355S
        • Nelson R.L.
        Iron and colorectal cancer risk: human studies.
        Nutr Rev. 2001; 59: 140-148
        • Bartsch H.
        • Nair J.
        • Owen R.W.
        Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: emerging evidence for their role as risk modifiers.
        Carcinogenesis. 1999; 20: 2209-2218
        • Block G.
        • Patterson B.
        • Subar A.
        Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence.
        Nutr Cancer. 1992; 18: 1-29
        • Giovannucci E.
        • Stampfer M.J.
        • Colditz G.A.
        • et al.
        A comparison of prospective and retrospective assessments of diet in the study of breast cancer.
        Am J Epidemiol. 1993; 137: 502-511
        • Giovannucci E.
        • Stampfer M.J.
        • Colditz G.A.
        • et al.
        Recall and selection bias in reporting past alcohol consumption among breast cancer cases.
        Cancer Causes Control. 1993; 4: 441-448
        • Malila N.
        • Virtanen M.
        • Pietinen P.
        • et al.
        A comparison of prospective and retrospective assessments of diet in a study of colorectal cancer.
        Nutr Cancer. 1998; 32: 146-153
        • Terzic J.
        • Grivennikov S.
        • Karin E.
        • et al.
        Inflammation and colon cancer.
        Gastroenterology. 2010; 138: 2101-2114
        • Elinav E.
        • Nowarski R.
        • Thaiss C.A.
        • et al.
        Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms.
        Nat Rev Cancer. 2013; 13: 759-771
        • Sears C.L.
        • Garrett W.S.
        Microbes, microbiota, and colon cancer.
        Cell Host Microbe. 2014; 15: 317-328
        • Louis P.
        • Hold G.L.
        • Flint H.J.
        The gut microbiota, bacterial metabolites and colorectal cancer.
        Nat Rev Microbiol. 2014; 12: 661-672
        • Newmark H.L.
        • Wargovich M.J.
        • Bruce W.R.
        Colon cancer and dietary fat, phosphate, and calcium: a hypothesis.
        J Natl Cancer Inst. 1984; 72: 1323-1325
        • Garland C.
        • Shekelle R.B.
        • Barrett-Connor E.
        • et al.
        Dietary vitamin D and calcium and risk of colorectal cancer: a 19-year prospective study in men.
        Lancet. 1985; 1: 307-309
        • Park S.Y.
        • Murphy S.P.
        • Wilkens L.R.
        • et al.
        Calcium and vitamin D intake and risk of colorectal cancer: the Multiethnic Cohort Study.
        Am J Epidemiol. 2007; 165: 784-793
        • Shin A.
        • Li H.
        • Shu X.O.
        • et al.
        Dietary intake of calcium, fiber and other micronutrients in relation to colorectal cancer risk: results from the Shanghai Women's Health Study.
        Int J Cancer. 2006; 119: 2938-2942
        • Kesse E.
        • Boutron-Ruault M.C.
        • Norat T.
        • et al.
        Dietary calcium, phosphorus, vitamin D, dairy products and the risk of colorectal adenoma and cancer among French women of the E3N-EPIC prospective study.
        Int J Cancer. 2005; 117: 137-144
        • Bostick R.M.
        • Potter J.D.
        • Sellers T.A.
        • et al.
        Relation of calcium, vitamin D, and dairy food intake to incidence of colon cancer among older women. The Iowa Women's Health Study.
        Am J Epidemiol. 1993; 137: 1302-1317
        • Zheng W.
        • Anderson K.E.
        • Kushi L.H.
        • et al.
        A prospective cohort study of intake of calcium, vitamin D, and other micronutrients in relation to incidence of rectal cancer among postmenopausal women.
        Cancer Epidemiol Biomarkers Prev. 1998; 7: 221-225
        • Wu K.
        • Willett W.C.
        • Fuchs C.S.
        • et al.
        Calcium intake and risk of colon cancer in women and men.
        J Natl Cancer Inst. 2002; 94: 437-446
        • Flood A.
        • Peters U.
        • Chatterjee N.
        • et al.
        Calcium from diet and supplements is associated with reduced risk of colorectal cancer in a prospective cohort of women.
        Cancer Epidemiol Biomarkers Prev. 2005; 14: 126-132
        • Larsson S.C.
        • Bergkvist L.
        • Rutegard J.
        • et al.
        Calcium and dairy food intakes are inversely associated with colorectal cancer risk in the Cohort of Swedish Men.
        Am J Clin Nutr. 2006; 83: 667-673
        • Ishihara J.
        • Inoue M.
        • Iwasaki M.
        • et al.
        Dietary calcium, vitamin D, and the risk of colorectal cancer.
        Am J Clin Nutr. 2008; 88: 1576-1583
        • Martinez M.E.
        • Marshall J.R.
        • Sampliner R.
        • et al.
        Calcium, vitamin D, and risk of adenoma recurrence (United States).
        Cancer Causes Control. 2002; 13: 213-220
        • Peters U.
        • Chatterjee N.
        • McGlynn K.A.
        • et al.
        Calcium intake and colorectal adenoma in a US colorectal cancer early detection program.
        Am J Clin Nutr. 2004; 80: 1358-1365
        • Oh K.
        • Willett W.C.
        • Wu K.
        • et al.
        Calcium and vitamin D intakes in relation to risk of distal colorectal adenoma in women.
        Am J Epidemiol. 2007; 165: 1178-1186
        • Massa J.
        • Cho E.
        • Orav E.J.
        • et al.
        Total calcium intake and colorectal adenoma in young women.
        Cancer Causes Control. 2014; 25: 451-460
        • McCullough M.L.
        • Robertson A.S.
        • Rodriguez C.
        • et al.
        Calcium, vitamin D, dairy products, and risk of colorectal cancer in the Cancer Prevention Study II Nutrition Cohort (United States).
        Cancer Causes Control. 2003; 14: 1-12
        • Jenab M.
        • Bueno-de-Mesquita H.B.
        • Ferrari P.
        • et al.
        Association between pre-diagnostic circulating vitamin D concentration and risk of colorectal cancer in European populations: a nested case-control study.
        BMJ. 2010; 340: b5500
        • Pietinen P.
        • Malila N.
        • Virtanen M.
        • et al.
        Diet and risk of colorectal cancer in a cohort of Finnish men.
        Cancer Causes Control. 1999; 10: 387-396
        • Martinez M.E.
        • Giovannucci E.L.
        • Colditz G.A.
        • et al.
        Calcium, vitamin D, and the occurrence of colorectal cancer among women.
        J Natl Cancer Inst. 1996; 88: 1375-1382
        • Lin J.
        • Zhang S.M.
        • Cook N.R.
        • et al.
        Intakes of calcium and vitamin D and risk of colorectal cancer in women.
        Am J Epidemiol. 2005; 161: 755-764
        • Heilbrun L.K.
        • Nomura A.
        • Hankin J.H.
        • et al.
        Dietary vitamin D and calcium and risk of colorectal cancer.
        Lancet. 1985; 1: 925
        • Gaard M.
        • Tretli S.
        • Loken E.B.
        Dietary factors and risk of colon cancer: a prospective study of 50,535 young Norwegian men and women.
        Eur J Cancer Prev. 1996; 5: 445-454

      Supplementary References

        • Jarvinen R.
        • Knekt P.
        • Hakulinen T.
        • et al.
        Prospective study on milk products, calcium and cancers of the colon and rectum.
        Eur J Clin Nutr. 2001; 55: 1000-1007
        • Kampman E.
        • Goldbohm R.A.
        • van den Brandt P.A.
        • et al.
        Fermented dairy products, calcium, and colorectal cancer in The Netherlands Cohort Study.
        Cancer Res. 1994; 54: 3186-3190
        • Baron J.A.
        • Beach M.
        • Mandel J.S.
        • et al.
        Calcium supplements for the prevention of colorectal adenomas. Calcium Polyp Prevention Study Group.
        N Engl J Med. 1999; 340: 101-107
        • Bonithon-Kopp C.
        • Kronborg O.
        • Giacosa A.
        • et al.
        Calcium and fibre supplementation in prevention of colorectal adenoma recurrence: a randomised intervention trial. European Cancer Prevention Organisation Study Group.
        Lancet. 2000; 356: 1300-1306
        • Wallace K.
        • Baron J.A.
        • Cole B.F.
        • et al.
        Effect of calcium supplementation on the risk of large bowel polyps.
        J Natl Cancer Inst. 2004; 96: 921-925
        • Holt P.R.
        • Atillasoy E.O.
        • Gilman J.
        • et al.
        Modulation of abnormal colonic epithelial cell proliferation and differentiation by low-fat dairy foods: a randomized controlled trial.
        JAMA. 1998; 280: 1074-1079
        • Gregoire R.C.
        • Stern H.S.
        • Yeung K.S.
        • et al.
        Effect of calcium supplementation on mucosal cell proliferation in high risk patients for colon cancer.
        Gut. 1989; 30: 376-382
        • Rozen P.
        • Fireman Z.
        • Fine N.
        • et al.
        Oral calcium suppresses increased rectal epithelial proliferation of persons at risk of colorectal cancer.
        Gut. 1989; 30: 650-655
        • Bostick R.M.
        • Fosdick L.
        • Wood J.R.
        • et al.
        Calcium and colorectal epithelial cell proliferation in sporadic adenoma patients: a randomized, double-blinded, placebo-controlled clinical trial.
        J Natl Cancer Inst. 1995; 87: 1307-1315
        • Fedirko V.
        • Bostick R.M.
        • Long Q.
        • et al.
        Effects of supplemental vitamin D and calcium on oxidative DNA damage marker in normal colorectal mucosa: a randomized clinical trial.
        Cancer Epidemiol Biomarkers Prev. 2010; 19: 280-291
        • Ahearn T.U.
        • Shaukat A.
        • Flanders W.D.
        • et al.
        A randomized clinical trial of the effects of supplemental calcium and vitamin D3 on the APC/beta-catenin pathway in the normal mucosa of colorectal adenoma patients.
        Cancer Prev Res (Phila). 2012; 5: 1247-1256
        • Lamprecht S.A.
        • Lipkin M.
        Cellular mechanisms of calcium and vitamin D in the inhibition of colorectal carcinogenesis.
        Ann N Y Acad Sci. 2001; 952: 73-87
        • Lamprecht S.A.
        • Lipkin M.
        Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms.
        Nat Rev Cancer. 2003; 3: 601-614
        • Cheng S.X.
        • Lightfoot Y.L.
        • Yang T.
        • et al.
        Epithelial CaSR deficiency alters intestinal integrity and promotes proinflammatory immune responses.
        FEBS Lett. 2014; 588: 4158-4166
        • Wactawski-Wende J.
        • Kotchen J.M.
        • Anderson G.L.
        • et al.
        Calcium plus vitamin D supplementation and the risk of colorectal cancer.
        N Engl J Med. 2006; 354: 684-696
        • Forman M.R.
        • Levin B.
        Calcium plus vitamin D3 supplementation and colorectal cancer in women.
        N Engl J Med. 2006; 354: 752-754
        • Giovannucci E.
        Calcium plus vitamin D supplementation and the risk of colorectal cancer.
        N Engl J Med. 2006; 354: 2287-2288
        • Holick M.F.
        Calcium plus vitamin D supplementation and the risk of colorectal cancer.
        N Engl J Med. 2006; 354: 2287-2288
        • Bolland M.J.
        • Grey A.
        • Gamble G.D.
        • et al.
        Calcium and vitamin D supplements and health outcomes: a reanalysis of the Women's Health Initiative (WHI) limited-access data set.
        Am J Clin Nutr. 2011; 94: 1144-1149
        • Lappe J.M.
        • Travers-Gustafson D.
        • Davies K.M.
        • et al.
        Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial.
        Am J Clin Nutr. 2007; 85: 1586-1591
        • Avenell A.
        • MacLennan G.S.
        • Jenkinson D.J.
        • et al.
        Long-term follow-up for mortality and cancer in a randomized placebo-controlled trial of vitamin D(3) and/or calcium (RECORD trial).
        J Clin Endocrinol Metab. 2012; 97: 614-622
        • Baron J.A.
        • Barry E.L.
        • Ahnen D.J.
        • et al.
        A clinical trial of supplementation with vitamin D and/or calcium for the prevention of colorectal adenomas.
        in: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research. AACR, San Diego2014
        • Cho E.
        • Smith-Warner S.A.
        • Spiegelman D.
        • et al.
        Dairy foods, calcium, and colorectal cancer: a pooled analysis of 10 cohort studies.
        J Natl Cancer Inst. 2004; 96: 1015-1022
        • Keum N.
        • Aune D.
        • Greenwood D.C.
        • et al.
        Calcium intake and colorectal cancer risk: dose-response meta-analysis of prospective observational studies.
        Int J Cancer. 2014; 135: 1940-1948
        • Marcus P.M.
        • Newcomb P.A.
        The association of calcium and vitamin D, and colon and rectal cancer in Wisconsin women.
        Int J Epidemiol. 1998; 27: 788-793
        • Newmark H.L.
        • Shiff S.J.
        Re: calcium intake and risk of colon cancer in women and men.
        J Natl Cancer Inst. 2003; 95: 169
        • Rafter J.J.
        • Eng V.W.
        • Furrer R.
        • et al.
        Effects of calcium and pH on the mucosal damage produced by deoxycholic acid in the rat colon.
        Gut. 1986; 27: 1320-1329
        • Grau M.V.
        • Baron J.A.
        • Sandler R.S.
        • et al.
        Vitamin D, calcium supplementation, and colorectal adenomas: results of a randomized trial.
        J Natl Cancer Inst. 2003; 95: 1765-1771
        • Brenner B.M.
        • Russell N.
        • Albrecht S.
        • et al.
        The effect of dietary vitamin D3 on the intracellular calcium gradient in mammalian colonic crypts.
        Cancer Lett. 1998; 127: 43-53
        • Dai Q.
        • Shrubsole M.J.
        • Ness R.M.
        • et al.
        The relation of magnesium and calcium intakes and a genetic polymorphism in the magnesium transporter to colorectal neoplasia risk.
        Am J Clin Nutr. 2007; 86: 743-751
        • Dai Q.
        • Sandler R.
        • Barry E.
        • et al.
        Calcium, magnesium, and colorectal cancer.
        Epidemiology. 2012; 23: 504-505
        • Iseri L.T.
        • French J.H.
        Magnesium: nature's physiologic calcium blocker.
        Am Heart J. 1984; 108: 188-193
        • Norman D.A.
        • Fordtran J.S.
        • Brinkley L.J.
        • et al.
        Jejunal and ileal adaptation to alterations in dietary calcium: changes in calcium and magnesium absorption and pathogenetic role of parathyroid hormone and 1,25-dihydroxyvitamin D.
        J Clin Invest. 1981; 67: 1599-1603
        • Kim H.S.
        • Newcomb P.A.
        • Ulrich C.M.
        • et al.
        Vitamin D receptor polymorphism and the risk of colorectal adenomas: evidence of interaction with dietary vitamin D and calcium.
        Cancer Epidemiol Biomarkers Prev. 2001; 10: 869-874
        • Boyapati S.M.
        • Bostick R.M.
        • McGlynn K.A.
        • et al.
        Calcium, vitamin D, and risk for colorectal adenoma: dependency on vitamin D receptor BsmI polymorphism and nonsteroidal anti-inflammatory drug use?.
        Cancer Epidemiol Biomarkers Prev. 2003; 12: 631-637
        • Slattery M.L.
        • Neuhausen S.L.
        • Hoffman M.
        • et al.
        Dietary calcium, vitamin D, VDR genotypes and colorectal cancer.
        Int J Cancer. 2004; 111: 750-756
        • Bolland M.J.
        • Avenell A.
        • Baron J.A.
        • et al.
        Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis.
        BMJ. 2010; 341: c3691
        • Garland C.F.
        • Garland F.C.
        Do sunlight and vitamin D reduce the likelihood of colon cancer?.
        Int J Epidemiol. 1980; 9: 227-231
        • Boscoe F.P.
        • Schymura M.J.
        Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993-2002.
        BMC Cancer. 2006; 6: 264
        • Freedman D.M.
        • Dosemeci M.
        • McGlynn K.
        Sunlight and mortality from breast, ovarian, colon, prostate, and non-melanoma skin cancer: a composite death certificate based case-control study.
        Occup Environ Med. 2002; 59: 257-262
        • Braun M.M.
        • Helzlsouer K.J.
        • Hollis B.W.
        • et al.
        Colon cancer and serum vitamin D metabolite levels 10-17 years prior to diagnosis.
        Am J Epidemiol. 1995; 142: 608-611
        • Feskanich D.
        • Ma J.
        • Fuchs C.S.
        • et al.
        Plasma vitamin D metabolites and risk of colorectal cancer in women.
        Cancer Epidemiol Biomarkers Prev. 2004; 13: 1502-1508
        • Garland C.F.
        • Comstock G.W.
        • Garland F.C.
        • et al.
        Serum 25-hydroxyvitamin D and colon cancer: eight-year prospective study.
        Lancet. 1989; 2: 1176-1178
        • Otani T.
        • Iwasaki M.
        • Sasazuki S.
        • et al.
        Plasma vitamin D and risk of colorectal cancer: the Japan Public Health Center-Based Prospective Study.
        Br J Cancer. 2007; 97: 446-451
        • Tangrea J.
        • Helzlsouer K.
        • Pietinen P.
        • et al.
        Serum levels of vitamin D metabolites and the subsequent risk of colon and rectal cancer in Finnish men.
        Cancer Causes Control. 1997; 8: 615-625
        • Woolcott C.G.
        • Wilkens L.R.
        • Nomura A.M.Y.
        • et al.
        Plasma 25-hydroxyvitamin D levels and the risk of colorectal cancer: the Multiethnic Cohort Study.
        Cancer Epidemiol Biomarkers Prev. 2010; 19: 130-134
        • Wu K.
        • Feskanich D.
        • Fuchs C.S.
        • et al.
        A nested case-control study of plasma 25-hydroxyvitamin D concentrations and risk of colorectal cancer.
        J Natl Cancer Inst. 2007; 99: 1120-1129
        • Weinstein S.J.
        • Purdue M.P.
        • Smith-Warner S.A.
        • et al.
        Serum 25-hydroxyvitamin D, vitamin D binding protein, and risk of colorectal cancer in the prostate, lung, colorectal, and ovarian cancer screening trial.
        Int J Cancer. 2015; 136: E654-E664
        • Lipworth L.
        • Bender T.J.
        • Rossi M.
        • et al.
        Dietary vitamin D intake and cancers of the colon and rectum: a case-control study in Italy.
        Nutr Cancer. 2009; 61: 70-75
        • Mizoue T.
        • Kimura Y.
        • Toyomura K.
        • et al.
        Calcium, dairy foods, vitamin D, and colorectal cancer risk: the Fukuoka colorectal cancer study.
        Cancer Epidemiol Biomarkers Prev. 2008; 17: 2800-2807
        • Terry P.
        • Baron J.A.
        • Bergkvist L.
        • et al.
        Dietary calcium and vitamin D intake and risk of colorectal cancer: a prospective cohort study in women.
        Nutr Cancer. 2002; 43: 39-46
        • Kearney J.
        • Giovannucci E.
        • Rimm E.B.
        • et al.
        Calcium, vitamin D, and dairy foods and the occurrence of colon cancer in men.
        Am J Epidemiol. 1996; 143: 907-917
        • Giovannucci E.
        • Liu Y.
        • Rimm E.B.
        • et al.
        Prospective study of predictors of vitamin D status and cancer incidence and mortality in men.
        J Natl Cancer Inst. 2006; 98: 451-459
        • Jacobs E.T.
        • Hibler E.A.
        • Lance P.
        • et al.
        Association between circulating concentrations of 25(OH)D and colorectal adenoma: a pooled analysis.
        Int J Cancer. 2013; 133: 2980-2988
        • Li M.
        • Chen P.
        • Li J.
        • et al.
        Review: the impacts of circulating 25-hydroxyvitamin D levels on cancer patient outcomes: a systematic review and meta-analysis.
        J Clin Endocrinol Metab. 2014; 99: 2327-2336
        • Ma Y.
        • Zhang P.
        • Wang F.
        • et al.
        Association between vitamin D and risk of colorectal cancer: a systematic review of prospective studies.
        J Clin Oncol. 2011; 29: 3775-3782
        • Bischoff-Ferrari H.A.
        • Giovannucci E.
        • Willett W.C.
        • et al.
        Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes.
        Am J Clin Nutr. 2006; 84: 18-28
        • IOM (Institute of Medicine)
        Dietary reference intakes for calcium and vitamin D.
        The National Academies Press, Washington, DC2011
        • Ng K.
        • Scott J.B.
        • Drake B.F.
        • et al.
        Dose response to vitamin D supplementation in African Americans: results of a 4-arm, randomized, placebo-controlled trial.
        Am J Clin Nutr. 2014; 99: 587-598
        • Garland C.F.
        • Gorham E.D.
        • Mohr S.B.
        • et al.
        Vitamin D for cancer prevention: global perspective.
        Ann Epidemiol. 2009; 19: 468-483
        • Deeb K.K.
        • Trump D.L.
        • Johnson C.S.
        Vitamin D signalling pathways in cancer: potential for anticancer therapeutics.
        Nat Rev Cancer. 2007; 7: 684-700
        • Feldman D.
        • Krishnan A.V.
        • Swami S.
        • et al.
        The role of vitamin D in reducing cancer risk and progression.
        Nat Rev Cancer. 2014; 14: 342-357
        • Touvier M.
        • Chan D.S.
        • Lau R.
        • et al.
        Meta-analyses of vitamin D intake, 25-hydroxyvitamin D status, vitamin D receptor polymorphisms, and colorectal cancer risk.
        Cancer Epidemiol Biomarkers Prev. 2011; 20: 1003-1016
        • Holick M.F.
        Vitamin D deficiency.
        N Engl J Med. 2007; 357: 266-281
        • Meeker S.
        • Seamons A.
        • Paik J.
        • et al.
        Increased dietary vitamin D suppresses MAPK signaling, colitis, and colon cancer.
        Cancer Res. 2014; 74: 4398-4408
        • Song M.
        • Nishihara R.
        • Wang M.
        • et al.
        Plasma 25-hydroxyvitamin D and colorectal cancer risk according to tumour immunity status.
        Gut. 2015 Jan 15; (Epub ahead of print)
        • Adams J.S.
        • Hewison M.
        Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity.
        Nat Clin Pract Endocrinol Metab. 2008; 4: 80-90
        • Veldhoen M.
        • Brucklacher-Waldert V.
        Dietary influences on intestinal immunity.
        Nat Rev Immunol. 2012; 12: 696-708
        • Cadranel J.
        • Garabedian M.
        • Milleron B.
        • et al.
        1,25(OH)2D2 production by T lymphocytes and alveolar macrophages recovered by lavage from normocalcemic patients with tuberculosis.
        J Clin Invest. 1990; 85: 1588-1593
        • Edfeldt K.
        • Liu P.T.
        • Chun R.
        • et al.
        T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism.
        Proc Natl Acad Sci U S A. 2010; 107: 22593-22598
        • Liu P.T.
        • Stenger S.
        • Li H.
        • et al.
        Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response.
        Science. 2006; 311: 1770-1773
        • Trivedi D.P.
        • Doll R.
        • Khaw K.T.
        Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial.
        BMJ. 2003; 326: 469
        • Autier P.
        • Boniol M.
        • Pizot C.
        • et al.
        Vitamin D status and ill health: a systematic review.
        Lancet Diabetes Endocrinol. 2014; 2: 76-89
        • Song M.
        • Wu K.
        • Chan A.T.
        • et al.
        Plasma 25-hydroxyvitamin D and risk of colorectal cancer after adjusting for inflammatory markers.
        Cancer Epidemiol Biomarkers Prev. 2014; 23: 2175-2180
        • Manson J.E.
        • Bassuk S.S.
        • Lee I.M.
        • et al.
        The VITamin D and OmegA-3 TriaL (VITAL): rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease.
        Contemp Clin Trials. 2012; 33: 159-171
        • Burkitt D.P.
        Epidemiology of cancer of the colon and rectum.
        Cancer. 1971; 28: 3-13
        • Bergman E.N.
        Energy contributions of volatile fatty acids from the gastrointestinal tract in various species.
        Physiol Rev. 1990; 70: 567-590
        • Hamer H.M.
        • Jonkers D.
        • Venema K.
        • et al.
        Review article: the role of butyrate on colonic function.
        Aliment Pharmacol Ther. 2008; 27: 104-119
        • Fung K.Y.
        • Cosgrove L.
        • Lockett T.
        • et al.
        A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate.
        Br J Nutr. 2012; 108: 820-831
        • Neish A.S.
        Microbes in gastrointestinal health and disease.
        Gastroenterology. 2009; 136: 65-80
        • Aune D.
        • Chan D.S.M.
        • Lau R.
        • et al.
        Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies.
        BMJ. 2011; 343: d6617
        • Wu A.H.
        • Paganini-Hill A.
        • Ross R.K.
        • et al.
        Alcohol, physical activity and other risk factors for colorectal cancer: a prospective study.
        Br J Cancer. 1987; 55: 687-694
        • Kato I.
        • Akhmedkhanov A.
        • Koenig K.
        • et al.
        Prospective study of diet and female colorectal cancer: the New York University Women's Health Study.
        Nutr Cancer. 1997; 28: 276-281
        • Terry P.
        • Giovannucci E.
        • Michels K.B.
        • et al.
        Fruit, vegetables, dietary fiber, and risk of colorectal cancer.
        J Natl Cancer Inst. 2001; 93: 525-533
        • Mai V.
        • Flood A.
        • Peters U.
        • et al.
        Dietary fibre and risk of colorectal cancer in the Breast Cancer Detection Demonstration Project (BCDDP) follow-up cohort.
        Int J Epidemiol. 2003; 32: 234-239
        • Sanjoaquin M.A.
        • Appleby P.N.
        • Thorogood M.
        • et al.
        Nutrition, lifestyle and colorectal cancer incidence: a prospective investigation of 10998 vegetarians and non-vegetarians in the United Kingdom.
        Br J Cancer. 2004; 90: 118-121
        • Michels K.B.
        • Fuchs C.S.
        • Giovannucci E.
        • et al.
        Fiber intake and incidence of colorectal cancer among 76,947 women and 47,279 men.
        Cancer Epidemiol Biomarkers Prev. 2005; 14: 842-849
        • Otani T.
        • Iwasaki M.
        • Ishihara J.
        • et al.
        Dietary fiber intake and subsequent risk of colorectal cancer: the Japan Public Health Center-based prospective study.
        Int J Cancer. 2006; 119: 1475-1480
        • Kabat G.C.
        • Shikany J.M.
        • Beresford S.A.
        • et al.
        Dietary carbohydrate, glycemic index, and glycemic load in relation to colorectal cancer risk in the Women's Health Initiative.
        Cancer Causes Control. 2008; 19: 1291-1298
        • Butler L.M.
        • Wang R.
        • Koh W.P.
        • et al.
        Prospective study of dietary patterns and colorectal cancer among Singapore Chinese.
        Br J Cancer. 2008; 99: 1511-1516
        • Heilbrun L.K.
        • Nomura A.
        • Hankin J.H.
        • et al.
        Diet and colorectal cancer with special reference to fiber intake.
        Int J Cancer. 1989; 44: 1-6
        • Steinmetz K.A.
        • Kushi L.H.
        • Bostick R.M.
        • et al.
        Vegetables, fruit, and colon cancer in the Iowa Women's Health Study.
        Am J Epidemiol. 1994; 139: 1-15
        • Bingham S.A.
        • Day N.E.
        • Luben R.
        • et al.
        Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study.
        Lancet. 2003; 361: 1496-1501
        • McCullough M.L.
        • Robertson A.S.
        • Chao A.
        • et al.
        A prospective study of whole grains, fruits, vegetables and colon cancer risk.
        Cancer Causes Control. 2003; 14: 959-970
        • Nomura A.M.
        • Hankin J.H.
        • Henderson B.E.
        • et al.
        Dietary fiber and colorectal cancer risk: the multiethnic cohort study.
        Cancer Causes Control. 2007; 18: 753-764
        • Schatzkin A.
        • Mouw T.
        • Park Y.
        • et al.
        Dietary fiber and whole-grain consumption in relation to colorectal cancer in the NIH-AARP Diet and Health Study.
        Am J Clin Nutr. 2007; 85: 1353-1360
        • Wakai K.
        • Date C.
        • Fukui M.
        • et al.
        Dietary fiber and risk of colorectal cancer in the Japan collaborative cohort study.
        Cancer Epidemiol Biomarkers Prev. 2007; 16: 668-675
        • Dahm C.C.
        • Keogh R.H.
        • Spencer E.A.
        • et al.
        Dietary fiber and colorectal cancer risk: a nested case-control study using food diaries.
        J Natl Cancer Inst. 2010; 102: 614-626
        • Hansen L.
        • Skeie G.
        • Landberg R.
        • et al.
        Intake of dietary fiber, especially from cereal foods, is associated with lower incidence of colon cancer in the HELGA cohort.
        Int J Cancer. 2012; 131: 469-478
        • Murphy N.
        • Norat T.
        • Ferrari P.
        • et al.
        Dietary fibre intake and risks of cancers of the colon and rectum in the European prospective investigation into cancer and nutrition (EPIC).
        PLoS One. 2012; 7: e39361
        • Park Y.
        • Hunter D.J.
        • Spiegelman D.
        • et al.
        Dietary fiber intake and risk of colorectal cancer: a pooled analysis of prospective cohort studies.
        JAMA. 2005; 294: 2849-2857
        • Bingham S.A.
        • Norat T.
        • Moskal A.
        • et al.
        Is the association with fiber from foods in colorectal cancer confounded by folate intake?.
        Cancer Epidemiol Biomarkers Prev. 2005; 14: 1552-1556
        • Willett W.
        Nutritional epidemiology.
        3rd edition. Oxford University Press, New York, NY2012
        • DeCosse J.J.
        • Miller H.H.
        • Lesser M.L.
        Effect of wheat fiber and vitamins C and E on rectal polyps in patients with familial adenomatous polyposis.
        J Natl Cancer Inst. 1989; 81: 1290-1297
        • McKeown-Eyssen G.E.
        • Bright-See E.
        • Bruce W.R.
        • et al.
        A randomized trial of a low fat high fibre diet in the recurrence of colorectal polyps. Toronto Polyp Prevention Group.
        J Clin Epidemiol. 1994; 47: 525-536
        • MacLennan R.
        • Macrae F.
        • Bain C.
        • et al.
        Randomized trial of intake of fat, fiber, and beta carotene to prevent colorectal adenomas.
        J Natl Cancer Inst. 1995; 87: 1760-1766
        • Alberts D.S.
        • Martinez M.E.
        • Roe D.J.
        • et al.
        Lack of effect of a high-fiber cereal supplement on the recurrence of colorectal adenomas. Phoenix Colon Cancer Prevention Physicians' Network.
        N Engl J Med. 2000; 342: 1156-1162
        • Schatzkin A.
        • Lanza E.
        • Corle D.
        • et al.
        Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. Polyp Prevention Trial Study Group.
        N Engl J Med. 2000; 342: 1149-1155
        • Davis B.M.
        High-fiber diet and colorectal adenomas.
        N Engl J Med. 2000; 343: 736
        • Gerber M.
        High-fiber diet and colorectal adenomas.
        N Engl J Med. 2000; 343: 737
        • Sansbury L.B.
        • Wanke K.
        • Albert P.S.
        • et al.
        The effect of strict adherence to a high-fiber, high-fruit and -vegetable, and low-fat eating pattern on adenoma recurrence.
        Am J Epidemiol. 2009; 170: 576-584
        • Byers T.
        Diet, colorectal adenomas, and colorectal cancer.
        N Engl J Med. 2000; 342: 1206-1207
        • Mathers J.C.
        • Movahedi M.
        • Macrae F.
        • et al.
        Long-term effect of resistant starch on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial.
        Lancet Oncol. 2012; 13: 1242-1249
        • Kim Y.
        • Je Y.
        Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies.
        Am J Epidemiol. 2014; 180: 565-573
        • Threapleton D.E.
        • Greenwood D.C.
        • Evans C.E.
        • et al.
        Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis.
        BMJ. 2013; 347: f6879
        • Aufreiter S.
        • Gregory 3rd, J.F.
        • Pfeiffer C.M.
        • et al.
        Folate is absorbed across the colon of adults: evidence from cecal infusion of (13)C-labeled [6S]-5-formyltetrahydrofolic acid.
        Am J Clin Nutr. 2009; 90: 116-123
        • Kim T.H.
        • Yang J.
        • Darling P.B.
        • et al.
        A large pool of available folate exists in the large intestine of human infants and piglets.
        J Nutr. 2004; 134: 1389-1394
        • Pufulete M.
        • Al-Ghnaniem R.
        • Khushal A.
        • et al.
        Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma.
        Gut. 2005; 54: 648-653
        • Wei Q.Y.
        • Shen H.B.
        • Wang L.E.
        • et al.
        Association between low dietary folate intake and suboptimal cellular DNA repair capacity.
        Cancer Epidemiol Biomarkers Prev. 2003; 12: 963-969
        • Khosraviani K.
        • Weir H.P.
        • Hamilton P.
        • et al.
        Effect of folate supplementation on mucosal cell proliferation in high risk patients for colon cancer.
        Gut. 2002; 51: 195-199
        • Song J.
        • Medline A.
        • Mason J.B.
        • et al.
        Effects of dietary folate on intestinal tumorigenesis in the Apc(Min) mouse.
        Cancer Res. 2000; 60: 5434-5440
        • Pufulete M.
        • Al-Ghnaniem R.
        • Leather A.J.
        • et al.
        Folate status, genomic DNA hypomethylation, and risk of colorectal adenoma and cancer: a case control study.
        Gastroenterology. 2003; 124: 1240-1248
        • Giovannucci E.
        • Rimm E.B.
        • Ascherio A.
        • et al.
        Alcohol, low-methionine–low-folate diets, and risk of colon cancer in men.
        J Natl Cancer Inst. 1995; 87: 265-273
        • Giovannucci E.
        • Stampfer M.J.
        • Colditz G.A.
        • et al.
        Multivitamin use, folate, and colon cancer in women in the Nurses' Health Study.
        Ann Intern Med. 1998; 129: 517-524
        • Gibson T.M.
        • Weinstein S.J.
        • Pfeiffer R.M.
        • et al.
        Pre- and postfortification intake of folate and risk of colorectal cancer in a large prospective cohort study in the United States.
        Am J Clin Nutr. 2011; 94: 1053-1062
        • Stevens V.L.
        • McCullough M.L.
        • Sun J.
        • et al.
        High levels of folate from supplements and fortification are not associated with increased risk of colorectal cancer.
        Gastroenterology. 2011; 141: 98-105
        • Le Marchand L.
        • White K.K.
        • Nomura A.M.Y.
        • et al.
        Plasma levels of B vitamins and colorectal cancer risk: the Multiethnic Cohort Study.
        Cancer Epidemiol Biomarkers Prev. 2009; 18: 2195-2201
        • Glynn S.A.
        • Albanes D.
        • Pietinen P.
        • et al.
        Colorectal cancer and folate status: a nested case-control study among male smokers.
        Cancer Epidemiol Biomarkers Prev. 1996; 5: 487-494
        • Kato I.
        • Dnistrian A.M.
        • Schwartz M.
        • et al.
        Serum folate, homocysteine and colorectal cancer risk in women: a nested case-control study.
        Br J Cancer. 1999; 79: 1917-1922
        • Terry P.
        • Jain M.
        • Miller A.B.
        • et al.
        Dietary intake of folic acid and colorectal cancer risk in a cohort of women.
        Int J Cancer. 2002; 97: 864-867
        • Larsson S.C.
        • Giovannucci E.
        • Wolk A.
        A prospective study of dietary folate intake and risk of colorectal cancer: modification by caffeine intake and cigarette smoking.
        Cancer Epidemiol Biomarkers Prev. 2005; 14: 740-743
        • Konings E.J.M.
        • Goldbohm R.A.
        • Brants H.A.M.
        • et al.
        Intake of dietary folate vitamers and risk of colorectal carcinoma - results from the Netherlands Cohort Study.
        Cancer. 2002; 95: 1421-1433
        • Giovannucci E.
        • Stampfer M.J.
        • Colditz G.A.
        • et al.
        Folate, methionine, and alcohol intake and risk of colorectal adenoma.
        J Natl Cancer Inst. 1993; 85: 875-884
        • Baron J.A.
        • Sandler R.S.
        • Haile R.W.
        • et al.
        Folate intake, alcohol consumption, cigarette smoking, and risk of colorectal adenomas.
        J Natl Cancer Inst. 1998; 90: 57-62
        • Martinez M.E.
        • Henning S.M.
        • Alberts D.S.
        Folate and colorectal neoplasia: relation between plasma and dietary markers of folate and adenoma recurrence.
        Am J Clin Nutr. 2004; 79: 691-697
        • Hermann S.
        • Rohrmann S.
        • Linseisen J.
        Lifestyle factors, obesity and the risk of colorectal adenomas in EPIC-Heidelberg.
        Cancer Causes Control. 2009; 20: 1397-1408
        • Zschaebitz S.
        • Cheng T.-Y.D.
        • Neuhouser M.L.
        • et al.
        B vitamin intakes and incidence of colorectal cancer: results from the Women's Health Initiative Observational Study cohort.
        Am J Clin Nutr. 2013; 97: 332-343
        • Boyapati S.M.
        • Bostick R.M.
        • McGlynn K.A.
        • et al.
        Folate intake, MTHFR C677T polymorphism, alcohol consumption, and risk for sporadic colorectal adenoma (United States).
        Cancer Causes Control. 2004; 15: 493-501
        • Bassett J.K.
        • Severi G.
        • Hodge A.M.
        • et al.
        Dietary intake of B vitamins and methionine and colorectal cancer risk.
        Nutr Cancer. 2013; 65: 659-667
        • Schernhammer E.S.
        • Giovannucci E.
        • Kawasaki T.
        • et al.
        Dietary folate, alcohol and B vitamins in relation to LINE-1 hypomethylation in colon cancer.
        Gut. 2010; 59: 794-799
        • Schernhammer E.S.
        • Giovannucci E.
        • Baba Y.
        • et al.
        B vitamins, methionine and alcohol intake and risk of colon cancer in relation to BRAF mutation and CpG island methylator phenotype (CIMP).
        PLoS One. 2011; 6: e21102
        • Schernhammer E.S.
        • Ogino S.
        • Fuchs C.S.
        Folate and vitamin B-6 intake and risk of colon cancer in relation to p53 expression.
        Gastroenterology. 2008; 135: 770-780
        • Ulrich C.M.
        • Kampman E.
        • Bigler J.
        • et al.
        Colorectal adenomas and the C677T MTHFR polymorphism: evidence for gene-environment interaction?.
        Cancer Epidemiol Biomarkers Prev. 1999; 8: 659-668
        • Sharp L.
        • Little J.
        Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a HuGE review.
        Am J Epidemiol. 2004; 159: 423-443
        • Marchand L.L.
        • Donlon T.
        • Hankin J.H.
        • et al.
        B-vitamin intake, metabolic genes, and colorectal cancer risk (United States).
        Cancer Causes Control. 2002; 13: 239-248
        • Levine A.J.
        • Siegmund K.D.
        • Ervin C.M.
        • et al.
        The methylenetetrahydrofolate reductase 677C -> T polymorphism and distal colorectal adenoma risk.
        Cancer Epidemiol Biomarkers Prev. 2000; 9: 657-663
        • Slattery M.L.
        • Potter J.D.
        • Samowitz W.
        • et al.
        Methylenetetrahydrofolate reductase, diet, and risk of colon cancer.
        Cancer Epidemiol Biomarkers Prev. 1999; 8: 513-518
        • Chen J.
        • Giovannucci E.
        • Kelsey K.
        • et al.
        A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer.
        Cancer Res. 1996; 56: 4862-4864
        • Ma J.
        • Stampfer M.J.
        • Giovannucci E.
        • et al.
        Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer.
        Cancer Res. 1997; 57: 1098-1102
        • Murtaugh M.A.
        • Curtin K.
        • Sweeney C.
        • et al.
        Dietary intake of folate and co-factors in folate metabolism, MTHFR polymorphisms, and reduced rectal cancer.
        Cancer Causes Control. 2007; 18: 153-163
        • Le Marchand L.
        • Wilkens L.R.
        • Kolonel L.N.
        • et al.
        The MTHFR C677T polymorphism and colorectal cancer: the multiethnic cohort study.
        Cancer Epidemiol Biomarkers Prev. 2005; 14: 1198-1203
        • Frosst P.
        • Blom H.J.
        • Milos R.
        • et al.
        A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase.
        Nat Genet. 1995; 10: 111-113
        • Kim Y.I.
        Will mandatory folic acid fortification prevent or promote cancer?.
        Am J Clin Nutr. 2004; 80: 1123-1128
        • Choi S.W.
        • Mason J.B.
        Folate status: effects on pathways of colorectal carcinogenesis.
        J Nutr. 2002; 132: 2413S-2418S
        • Kim Y.I.
        Folate and carcinogenesis: evidence, mechanisms, and implications.
        J Nutr Biochem. 1999; 10: 66-88
        • Protiva P.
        • Mason J.B.
        • Liu Z.
        • et al.
        Altered folate availability modifies the molecular environment of the human colorectum: implications for colorectal carcinogenesis.
        Cancer Prev Res (Phila). 2011; 4: 530-543
        • Ho G.Y.
        • Xue X.
        • Cushman M.
        • et al.
        Antagonistic effects of aspirin and folic acid on inflammation markers and subsequent risk of recurrent colorectal adenomas.
        J Natl Cancer Inst. 2009; 101: 1650-1654
        • Mason J.B.
        • Dickstein A.
        • Jacques P.F.
        • et al.
        A temporal association between folic acid fortification and an increase in colorectal cancer rates may be illuminating important biological principles: a hypothesis.
        Cancer Epidemiol Biomarkers Prev. 2007; 16: 1325-1329
        • Keum N.
        • Giovannucci E.L.
        Folic acid fortification and colorectal cancer risk.
        Am J Prev Med. 2014; 46: S65-S72
        • Vollset S.E.
        • Clarke R.
        • Lewington S.
        • et al.
        Effects of folic acid supplementation on overall and site-specific cancer incidence during the randomised trials: meta-analyses of data on 50 000 individuals.
        Lancet. 2013; 381: 1029-1036
        • Ulrich C.M.
        • Potter J.D.
        Folate and cancer–timing is everything.
        JAMA. 2007; 297: 2408-2409
        • Song J.
        • Sohn K.J.
        • Medline A.
        • et al.
        Chemopreventive effects of dietary folate on intestinal polyps in Apc+/-Msh2-/- mice.
        Cancer Res. 2000; 60: 3191-3199
        • Lee J.E.
        • Willett W.C.
        • Fuchs C.S.
        • et al.
        Folate intake and risk of colorectal cancer and adenoma: modification by time.
        Am J Clin Nutr. 2011; 93: 817-825
        • Wu K.
        • Platz E.A.
        • Willett W.C.
        • et al.
        A randomized trial on folic acid supplementation and risk of recurrent colorectal adenoma.
        Am J Clin Nutr. 2009; 90: 1623-1631
        • Logan R.F.
        • Grainge M.J.
        • Shepherd V.C.
        • et al.
        Aspirin and folic acid for the prevention of recurrent colorectal adenomas.
        Gastroenterology. 2008; 134: 29-38
        • Cole B.F.
        • Baron J.A.
        • Sandler R.S.
        • et al.
        Folic acid for the prevention of colorectal adenomas: a randomized clinical trial.
        JAMA. 2007; 297: 2351-2359
        • Gao Q.Y.
        • Chen H.M.
        • Chen Y.X.
        • et al.
        Folic acid prevents the initial occurrence of sporadic colorectal adenoma in Chinese older than 50 years of age: a randomized clinical trial.
        Cancer Prev Res (Phila). 2013; 6: 744-752
        • Larsson S.C.
        • Orsini N.
        • Wolk A.
        Vitamin B6 and risk of colorectal cancer: a meta-analysis of prospective studies.
        JAMA. 2010; 303: 1077-1083
        • Key T.J.
        • Appleby P.N.
        • Masset G.
        • et al.
        Vitamins, minerals, essential fatty acids and colorectal cancer risk in the United Kingdom Dietary Cohort Consortium.
        Int J Cancer. 2012; 131: E320-E325
        • de Vogel S.
        • Schneede J.
        • Ueland P.M.
        • et al.
        Biomarkers related to one-carbon metabolism as potential risk factors for distal colorectal adenomas.
        Cancer Epidemiol Biomarkers Prev. 2011; 20: 1726-1735
        • Eussen S.J.
        • Vollset S.E.
        • Hustad S.
        • et al.
        Plasma vitamins B2, B6, and B12, and related genetic variants as predictors of colorectal cancer risk.
        Cancer Epidemiol Biomarkers Prev. 2010; 19: 2549-2561
        • Weinstein S.J.
        • Albanes D.
        • Selhub J.
        • et al.
        One-carbon metabolism biomarkers and risk of colon and rectal cancers.
        Cancer Epidemiol Biomarkers Prev. 2008; 17: 3233-3240
        • Figueiredo J.C.
        • Levine A.J.
        • Grau M.V.
        • et al.
        Vitamins B2, B6, and B12 and risk of new colorectal adenomas in a randomized trial of aspirin use and folic acid supplementation.
        Cancer Epidemiol Biomarkers Prev. 2008; 17: 2136-2145
        • Sharp L.
        • Little J.
        • Brockton N.T.
        • et al.
        Polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene, intakes of folate and related B vitamins and colorectal cancer: a case-control study in a population with relatively low folate intake.
        Br J Nutr. 2008; 99: 379-389
        • van den Donk M.
        • Buijsse B.
        • van den Berg S.W.
        • et al.
        Dietary intake of folate and riboflavin, MTHFR C677T genotype, and colorectal adenoma risk: a Dutch case-control study.
        Cancer Epidemiol Biomarkers Prev. 2005; 14: 1562-1566
        • La Vecchia C.
        • Braga C.
        • Negri E.
        • et al.
        Intake of selected micronutrients and risk of colorectal cancer.
        Int J Cancer. 1997; 73: 525-530
        • Harnack L.
        • Jacobs Jr., D.R.
        • Nicodemus K.
        • et al.
        Relationship of folate, vitamin B-6, vitamin B-12, and methionine intake to incidence of colorectal cancers.
        Nutr Cancer. 2002; 43: 152-158
        • Zhou Z.-Y.
        • Wan X.-Y.
        • Cao J.-W.
        Dietary methionine intake and risk of incident colorectal cancer: a meta-analysis of 8 prospective studies involving 431,029 participants.
        PLoS One. 2013; 8: e83588
        • Nitter M.
        • Norgard B.
        • de Vogel S.
        • et al.
        Plasma methionine, choline, betaine, and dimethylglycine in relation to colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC).
        Ann Oncol. 2014; 25: 1609-1615
        • Chen H.
        • Xia M.
        • Lin M.
        • et al.
        Role of methionine adenosyltransferase 2A and S-adenosylmethionine in mitogen-induced growth of human colon cancer cells.
        Gastroenterology. 2007; 133: 207-218
        • Li T.W.
        • Yang H.
        • Peng H.
        • et al.
        Effects of S-adenosylmethionine and methylthioadenosine on inflammation-induced colon cancer in mice.
        Carcinogenesis. 2012; 33: 427-435
        • Reuter S.
        • Gupta S.C.
        • Chaturvedi M.M.
        • et al.
        Oxidative stress, inflammation, and cancer: how are they linked?.
        Free Radic Biol Med. 2010; 49: 1603-1616
        • Shamberger R.J.
        • Tytko S.A.
        • Willis C.E.
        Antioxidants and cancer. Part VI. Selenium and age-adjusted human cancer mortality.
        Arch Environ Health. 1976; 31: 231-235
        • Rozen P.
        • Hellerstein S.M.
        • Horwitz C.
        The low incidence of colorectal cancer in a “high-risk” population: its correlation with dietary habits.
        Cancer. 1981; 48: 2692-2695
        • Rider A.A.
        • Arthur R.S.
        • Calkins B.M.
        • et al.
        Diet, nutrition intake, and metabolism in populations at high and low risk for colon cancer. Selected biochemical parameters in blood and urine.
        Am J Clin Nutr. 1984; 40: 917-920
        • Howe G.R.
        • Benito E.
        • Castelleto R.
        • et al.
        Dietary intake of fiber and decreased risk of cancers of the colon and rectum: evidence from the combined analysis of 13 case-control studies.
        J Natl Cancer Inst. 1992; 84: 1887-1896
        • Ferraroni M.
        • La Vecchia C.
        • D'Avanzo B.
        • et al.
        Selected micronutrient intake and the risk of colorectal cancer.
        Br J Cancer. 1994; 70: 1150-1155
        • Stahelin H.B.
        • Rosel F.
        • Buess E.
        • et al.
        Cancer, vitamins, and plasma lipids: prospective Basel study.
        J Natl Cancer Inst. 1984; 73: 1463-1468
        • Nomura A.
        • Heilbrun L.K.
        • Morris J.S.
        • et al.
        Serum selenium and the risk of cancer, by specific sites: case-control analysis of prospective data.
        J Natl Cancer Inst. 1987; 79: 103-108
        • Willett W.C.
        • Polk B.F.
        • Morris J.S.
        • et al.
        Prediagnostic serum selenium and risk of cancer.
        Lancet. 1983; 2: 130-134
        • Salonen J.T.
        • Alfthan G.
        • Huttunen J.K.
        • et al.
        Association between serum selenium and the risk of cancer.
        Am J Epidemiol. 1984; 120: 342-349
        • Bussey H.J.
        • DeCosse J.J.
        • Deschner E.E.
        • et al.
        A randomized trial of ascorbic acid in polyposis coli.
        Cancer. 1982; 50: 1434-1439
        • McKeown-Eyssen G.
        • Holloway C.
        • Jazmaji V.
        • et al.
        A randomized trial of vitamins C and E in the prevention of recurrence of colorectal polyps.
        Cancer Res. 1988; 48: 4701-4705
        • Roncucci L.
        • Di Donato P.
        • Carati L.
        • et al.
        Antioxidant vitamins or lactulose for the prevention of the recurrence of colorectal adenomas. Colorectal Cancer Study Group of the University of Modena and the Health Care District 16.
        Dis Colon Rectum. 1993; 36: 227-234
        • Malila N.
        • Virtamo J.
        • Virtanen M.
        • et al.
        Dietary and serum alpha-tocopherol, beta-carotene and retinol, and risk for colorectal cancer in male smokers.
        Eur J Clin Nutr. 2002; 56: 615-621
        • Terry P.
        • Jain M.
        • Miller A.B.
        • et al.
        Dietary carotenoid intake and colorectal cancer risk.
        Nutr Cancer. 2002; 42: 167-172
        • Roswall N.
        • Olsen A.
        • Christensen J.
        • et al.
        Micronutrient intake and risk of colon and rectal cancer in a Danish cohort.
        Cancer Epidemiol. 2010; 34: 40-46
        • Leenders M.
        • Leufkens A.M.
        • Siersema P.D.
        • et al.
        Plasma and dietary carotenoids and vitamins A, C and E and risk of colon and rectal cancer in the European Prospective Investigation into Cancer and Nutrition.
        Int J Cancer. 2014; 135: 2930-2939
        • Jacobs E.J.
        • Connell C.J.
        • Patel A.V.
        • et al.
        Vitamin C and vitamin E supplement use and colorectal cancer mortality in a large American Cancer Society cohort.
        Cancer Epidemiol Biomarkers Prev. 2001; 10: 17-23
        • Wu K.
        • Willett W.C.
        • Chan J.M.
        • et al.
        A prospective study on supplemental vitamin E intake and risk of colon cancer in women and men.
        Cancer Epidemiol Biomarkers Prev. 2002; 11: 1298-1304
        • van den Brandt P.A.
        • Goldbohm R.A.
        • van 't Veer P.
        • et al.
        A prospective cohort study on toenail selenium levels and risk of gastrointestinal cancer.
        J Natl Cancer Inst. 1993; 85: 224-229
        • Garland M.
        • Morris J.S.
        • Stampfer M.J.
        • et al.
        Prospective study of toenail selenium levels and cancer among women.
        J Natl Cancer Inst. 1995; 87: 497-505
        • Takata Y.
        • Kristal A.R.
        • King I.B.
        • et al.
        Serum selenium, genetic variation in selenoenzymes, and risk of colorectal cancer: primary analysis from the Women's Health Initiative Observational Study and meta-analysis.
        Cancer Epidemiol Biomarkers Prev. 2011; 20: 1822-1830
        • Mannisto S.
        • Yaun S.S.
        • Hunter D.J.
        • et al.
        Dietary carotenoids and risk of colorectal cancer in a pooled analysis of 11 cohort studies.
        Am J Epidemiol. 2007; 165: 246-255
        • Park Y.
        • Spiegelman D.
        • Hunter D.J.
        • et al.
        Intakes of vitamins A, C, and E and use of multiple vitamin supplements and risk of colon cancer: a pooled analysis of prospective cohort studies.
        Cancer Causes Control. 2010; 21: 1745-1757
        • Hercberg S.
        • Galan P.
        • Preziosi P.
        • et al.
        The SU.VI.MAX study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals.
        Arch Intern Med. 2004; 164: 2335-2342
      1. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial.
        Lancet. 2002; 360: 23-33
        • Greenberg E.R.
        • Baron J.A.
        • Tosteson T.D.
        • et al.
        A clinical trial of antioxidant vitamins to prevent colorectal adenoma. Polyp Prevention Study Group.
        N Engl J Med. 1994; 331: 141-147
        • Lin J.
        • Cook N.R.
        • Albert C.
        • et al.
        Vitamins C and E and beta carotene supplementation and cancer risk: a randomized controlled trial.
        J Natl Cancer Inst. 2009; 101: 14-23
        • Cook N.R.
        • Le I.M.
        • Manson J.E.
        • et al.
        Effects of beta-carotene supplementation on cancer incidence by baseline characteristics in the Physicians' Health Study (United States).
        Cancer Causes Control. 2000; 11: 617-626
        • Albanes D.
        • Malila N.
        • Taylor P.R.
        • et al.
        Effects of supplemental alpha-tocopherol and beta-carotene on colorectal cancer: results from a controlled trial (Finland).
        Cancer Causes Control. 2000; 11: 197-205
        • Lee I.M.
        • Cook N.R.
        • Manson J.E.
        • et al.
        Beta-carotene supplementation and incidence of cancer and cardiovascular disease: the Women's Health Study.
        J Natl Cancer Inst. 1999; 91: 2102-2106
        • Omenn G.S.
        • Goodman G.E.
        • Thornquist M.D.
        • et al.
        Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial.
        J Natl Cancer Inst. 1996; 88: 1550-1559
        • Lippman S.M.
        • Klein E.A.
        • Goodman P.J.
        • et al.
        Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT).
        JAMA. 2009; 301: 39-51
        • Lee I.M.
        • Cook N.R.
        • Gaziano J.M.
        • et al.
        Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women's Health Study: a randomized controlled trial.
        JAMA. 2005; 294: 56-65
        • Virtamo J.
        • Pietinen P.
        • Huttunen J.K.
        • et al.
        Incidence of cancer and mortality following alpha-tocopherol and beta-carotene supplementation: a postintervention follow-up.
        JAMA. 2003; 290: 476-485
        • Baron J.A.
        • Cole B.F.
        • Mott L.
        • et al.
        Neoplastic and antineoplastic effects of beta-carotene on colorectal adenoma recurrence: results of a randomized trial.
        J Natl Cancer Inst. 2003; 95: 717-722
        • Clark L.C.
        • Combs Jr., G.F.
        • Turnbull B.W.
        • et al.
        Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group.
        JAMA. 1996; 276: 1957-1963
        • Rayman M.P.
        Selenium and human health.
        Lancet. 2012; 379: 1256-1268
        • Rayman M.P.
        Food-chain selenium and human health: emphasis on intake.
        Br J Nutr. 2008; 100: 254-268
        • Goyal A.
        • Terry M.B.
        • Siegel A.B.
        Serum antioxidant nutrients, vitamin A, and mortality in U.S. Adults.
        Cancer Epidemiol Biomarkers Prev. 2013; 22: 2202-2211
        • Diwadkar-Navsariwala V.
        • Diamond A.M.
        The link between selenium and chemoprevention: a case for selenoproteins.
        J Nutr. 2004; 134: 2899-2902
        • Rayman M.P.
        The importance of selenium to human health.
        Lancet. 2000; 356: 233-241
        • Peters U.
        • Chatterjee N.
        • Hayes R.B.
        • et al.
        Variation in the selenoenzyme genes and risk of advanced distal colorectal adenoma.
        Cancer Epidemiol Biomarkers Prev. 2008; 17: 1144-1154
        • Meplan C.
        • Hughes D.J.
        • Pardini B.
        • et al.
        Genetic variants in selenoprotein genes increase risk of colorectal cancer.
        Carcinogenesis. 2010; 31: 1074-1079
        • Bermano G.
        • Pagmantidis V.
        • Holloway N.
        • et al.
        Evidence that a polymorphism within the 3'UTR of glutathione peroxidase 4 is functional and is associated with susceptibility to colorectal cancer.
        Genes Nutr. 2007; 2: 225-232
        • Hansen R.
        • Saebo M.
        • Skjelbred C.F.
        • et al.
        GPX Pro198Leu and OGG1 Ser326Cys polymorphisms and risk of development of colorectal adenomas and colorectal cancer.
        Cancer Lett. 2005; 229: 85-91
        • Hansen R.D.
        • Krath B.N.
        • Frederiksen K.
        • et al.
        GPX1 Pro(198)Leu polymorphism, erythrocyte GPX activity, interaction with alcohol consumption and smoking, and risk of colorectal cancer.
        Mutat Res. 2009; 664: 13-19
        • Meplan C.
        • Crosley L.K.
        • Nicol F.
        • et al.
        Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study).
        FASEB J. 2007; 21: 3063-3074
        • Meplan C.
        • Crosley L.K.
        • Nicol F.
        • et al.
        Functional effects of a common single-nucleotide polymorphism (GPX4c718t) in the glutathione peroxidase 4 gene: interaction with sex.
        Am J Clin Nutr. 2008; 87: 1019-1027
        • Waters D.J.
        • Chiang E.C.
        • Cooley D.M.
        • et al.
        Making sense of sex and supplements: differences in the anticarcinogenic effects of selenium in men and women.
        Mutat Res. 2004; 551: 91-107
        • Combs Jr., G.F.
        • Jackson M.I.
        • Watts J.C.
        • et al.
        Differential responses to selenomethionine supplementation by sex and genotype in healthy adults.
        Br J Nutr. 2012; 107: 1514-1525
        • Schomburg L.
        • Schweizer U.
        Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium.
        Biochim Biophys Acta. 2009; 1790: 1453-1462
        • Slattery M.L.
        • Lundgreen A.
        • Welbourn B.
        • et al.
        Genetic variation in selenoprotein genes, lifestyle, and risk of colon and rectal cancer.
        PLoS One. 2012; 7: e37312
        • Peters U.
        • Chatterjee N.
        • Church T.R.
        • et al.
        High serum selenium and reduced risk of advanced colorectal adenoma in a colorectal cancer early detection program.
        Cancer Epidemiol Biomarkers Prev. 2006; 15: 315-320
        • Jacobs E.T.
        • Jiang R.
        • Alberts D.S.
        • et al.
        Selenium and colorectal adenoma: results of a pooled analysis.
        J Natl Cancer Inst. 2004; 96: 1669-1675
        • Duffield-Lillico A.J.
        • Reid M.E.
        • Turnbull B.W.
        • et al.
        Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: a summary report of the Nutritional Prevention of Cancer Trial.
        Cancer Epidemiol Biomarkers Prev. 2002; 11: 630-639
        • Hughes D.J.
        • Fedirko V.
        • Jenab M.
        • et al.
        Selenium status is associated with colorectal cancer risk in the European prospective investigation of cancer and nutrition cohort.
        Int J Cancer. 2015; 136: 1149-1161
        • Rose D.P.
        • Boyar A.P.
        • Wynder E.L.
        International comparisons of mortality rates for cancer of the breast, ovary, prostate, and colon, and per capita food consumption.
        Cancer. 1986; 58: 2363-2371
        • Armstrong B.
        • Doll R.
        Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices.
        Int J Cancer. 1975; 15: 617-631
        • Nigro N.D.
        • Singh D.V.
        • Campbell R.L.
        • et al.
        Effect of dietary beef fat on intestinal tumor formation by azoxymethane in rats.
        J Natl Cancer Inst. 1975; 54: 439-442
        • Nauss K.M.
        • Locniskar M.
        • Newberne P.M.
        Effect of alterations in the quality and quantity of dietary fat on 1,2-dimethylhydrazine-induced colon tumorigenesis in rats.
        Cancer Res. 1983; 43: 4083-4090
        • Narisawa T.
        • Magadia N.E.
        • Weisburger J.H.
        • et al.
        Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N'-nitro-N-nitrosoguanidine in rats.
        J Natl Cancer Inst. 1974; 53: 1093-1097
        • Maslowski K.M.
        • Mackay C.R.
        Diet, gut microbiota and immune responses.
        Nat Immunol. 2011; 12: 5-9
        • Yu H.N.
        • Zhu J.
        • Pan W.S.
        • et al.
        Effects of fish oil with a high content of n-3 polyunsaturated fatty acids on mouse gut microbiota.
        Arch Med Res. 2014; 45: 195-202
        • Wu G.D.
        • Chen J.
        • Hoffmann C.
        • et al.
        Linking long-term dietary patterns with gut microbial enterotypes.
        Science. 2011; 334: 105-108
        • Laparra J.M.
        • Sanz Y.
        Interactions of gut microbiota with functional food components and nutraceuticals.
        Pharmacol Res. 2010; 61: 219-225
        • Schulz M.D.
        • Atay C.
        • Heringer J.
        • et al.
        High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity.
        Nature. 2014; 514: 508-512
        • Willett W.C.
        • Stampfer M.J.
        • Colditz G.A.
        • et al.
        Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women.
        N Engl J Med. 1990; 323: 1664-1672
        • Jarvinen R.
        • Knekt P.
        • Hakulinen T.
        • et al.
        Dietary fat, cholesterol and colorectal cancer in a prospective study.
        Br J Cancer. 2001; 85: 357-361
        • Howe G.R.
        • Aronson K.J.
        • Benito E.
        • et al.
        The relationship between dietary fat intake and risk of colorectal cancer: evidence from the combined analysis of 13 case-control studies.
        Cancer Causes Control. 1997; 8: 215-228
        • Flood A.
        • Velie E.M.
        • Sinha R.
        • et al.
        Meat, fat, and their subtypes as risk factors for colorectal cancer in a prospective cohort of women.
        Am J Epidemiol. 2003; 158: 59-68
        • Chyou P.H.
        • Nomura A.M.
        • Stemmermann G.N.
        A prospective study of colon and rectal cancer among Hawaii Japanese men.
        Ann Epidemiol. 1996; 6: 276-282
        • Beresford S.A.A.
        • Johnson K.C.
        • Ritenbaugh C.
        • et al.
        Low-fat dietary pattern and risk of colorectal cancer - the Women's Health Initiative randomized controlled dietary modification trial.
        JAMA. 2006; 295: 643-654
        • Lin J.
        • Zhang S.M.
        • Cook N.R.
        • et al.
        Dietary fat and fatty acids and risk of colorectal cancer in women.
        Am J Epidemiol. 2004; 160: 1011-1022
        • Terry P.
        • Bergkvist L.
        • Holmberg L.
        • et al.
        No association between fat and fatty acids intake and risk of colorectal cancer.
        Cancer Epidemiol Biomarkers Prev. 2001; 10: 913-914
        • Liu L.
        • Zhuang W.
        • Wang R.Q.
        • et al.
        Is dietary fat associated with the risk of colorectal cancer? A meta-analysis of 13 prospective cohort studies.
        Eur J Nutr. 2011; 50: 173-184
        • Serhan C.N.
        • Chiang N.
        • Van Dyke T.E.
        Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators.
        Nat Rev Immunol. 2008; 8: 349-361
        • Larsson S.C.
        • Kumlin M.
        • Ingelman-Sundberg M.
        • et al.
        Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms.
        Am J Clin Nutr. 2004; 79: 935-945
        • Calder P.C.
        n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases.
        Am J Clin Nutr. 2006; 83: 1505S-1519S
        • Oh D.Y.
        • Talukdar S.
        • Bae E.J.
        • et al.
        GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects.
        Cell. 2010; 142: 687-698
        • West N.J.
        • Clark S.K.
        • Phillips R.K.
        • et al.
        Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis.
        Gut. 2010; 59: 918-925
        • Hull M.A.
        • Sandell A.C.
        • Montgomery A.A.
        • et al.
        A randomized controlled trial of eicosapentaenoic acid and/or aspirin for colorectal adenoma prevention during colonoscopic surveillance in the NHS Bowel Cancer Screening Programme (The seAFOod Polyp Prevention Trial): study protocol for a randomized controlled trial.
        Trials. 2013; 14: 237
        • Shen X.J.
        • Zhou J.D.
        • Dong J.Y.
        • et al.
        Dietary intake of n-3 fatty acids and colorectal cancer risk: a meta-analysis of data from 489 000 individuals.
        Br J Nutr. 2012; 108: 1550-1556
        • Hall M.N.
        • Campos H.
        • Li H.
        • et al.
        Blood levels of long-chain polyunsaturated fatty acids, aspirin, and the risk of colorectal cancer.
        Cancer Epidemiol Biomarkers Prev. 2007; 16: 314-321
        • Daniel C.R.
        • McCullough M.L.
        • Patel R.C.
        • et al.
        Dietary intake of omega-6 and omega-3 fatty acids and risk of colorectal cancer in a prospective cohort of U.S. men and women.
        Cancer Epidemiol Biomarkers Prev. 2009; 18: 516-525
        • Murff H.J.
        • Shu X.O.
        • Li H.
        • et al.
        A prospective study of dietary polyunsaturated fatty acids and colorectal cancer risk in Chinese women.
        Cancer Epidemiol Biomarkers Prev. 2009; 18: 2283-2291
        • Song M.
        • Chan A.T.
        • Fuchs C.S.
        • et al.
        Dietary intake of fish, omega-3 and omega-6 fatty acids and risk of colorectal cancer: a prospective study in U.S. men and women.
        Int J Cancer. 2014; 135: 2413-2423
        • Kantor E.D.
        • Lampe J.W.
        • Peters U.
        • et al.
        Long-chain omega-3 polyunsaturated fatty acid intake and risk of colorectal cancer.
        Nutr Cancer. 2014; 66: 716-727
        • Sasazuki S.
        • Inoue M.
        • Iwasaki M.
        • et al.
        Intake of n-3 and n-6 polyunsaturated fatty acids and development of colorectal cancer by subsite: Japan Public Health Center-based prospective study.
        Int J Cancer. 2011; 129: 1718-1729
        • McMichael A.J.
        • Potter J.D.
        Host factors in carcinogenesis: certain bile-acid metabolic profiles that selectively increase the risk of proximal colon cancer.
        J Natl Cancer Inst. 1985; 75: 185-191
        • Topping D.L.
        • Clifton P.M.
        Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides.
        Physiol Rev. 2001; 81: 1031-1064
        • Shanahan F.
        • O'Toole P.W.
        Host-microbe interactions and spatial variation of cancer in the gut.
        Nat Rev Cancer. 2014; 14: 511-512
        • Butler L.M.
        • Wang R.
        • Koh W.P.
        • et al.
        Marine n-3 and saturated fatty acids in relation to risk of colorectal cancer in Singapore Chinese: a prospective study.
        Int J Cancer. 2009; 124: 678-686
        • Pot G.K.
        • Geelen A.
        • van Heijningen E.-M.B.
        • et al.
        Opposing associations of serum n-3 and n-6 polyunsaturated fatty acids with colorectal adenoma risk: an endoscopy-based case-control study.
        Int J Cancer. 2008; 123: 1974-1977
        • Ghadimi R.
        • Kuriki K.
        • Tsuge S.
        • et al.
        Serum concentrations of fatty acids and colorectal adenoma risk: a case-control study in Japan.
        Asian Pac J Cancer Prev. 2008; 9: 111-118
        • Cottet V.
        • Collin M.
        • Gross A.S.
        • et al.
        Erythrocyte membrane phospholipid fatty acid concentrations and risk of colorectal adenomas: a case-control nested in the French E3N-EPIC cohort study.
        Cancer Epidemiol Biomarkers Prev. 2013; 22: 1417-1427
        • Kojima M.
        • Wakai K.
        • Tokudome S.
        • et al.
        Serum levels of polyunsaturated fatty acids and risk of colorectal cancer: a prospective study.
        Am J Epidemiol. 2005; 161: 462-471
        • Hu F.B.
        • Manson J.E.
        • Willett W.C.
        Types of dietary fat and risk of coronary heart disease: a critical review.
        J Am Coll Nutr. 2001; 20: 5-19
        • Horrobin D.F.
        Commentary on the workshop statement: are we really sure that arachidonic acid and linoleic acid are bad things?.
        Prostaglandins Leukot Essent Fatty Acids. 2000; 63: 145-147
        • Pischon T.
        • Hankinson S.E.
        • Hotamisligil G.S.
        • et al.
        Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women.
        Circulation. 2003; 108: 155-160
        • Odegaard A.O.
        • Pereira M.A.
        Trans fatty acids, insulin resistance, and type 2 diabetes.
        Nutr Rev. 2006; 64: 364-372
        • Mozaffarian D.
        • Aro A.
        • Willett W.C.
        Health effects of trans-fatty acids: experimental and observational evidence.
        Eur J Clin Nutr. 2009; 63: S5-S21
        • Hu J.
        • La Vecchia C.
        • de Groh M.
        • et al.
        Dietary transfatty acids and cancer risk.
        Eur J Cancer Prev. 2011; 20: 530-538
        • Limburg P.J.
        • Liu-Mares W.
        • Vierkant R.A.
        • et al.
        Prospective evaluation of trans-fatty acid intake and colorectal cancer risk in the Iowa Women's Health Study.
        Int J Cancer. 2008; 123: 2717-2719
        • Laake I.
        • Carlsen M.H.
        • Pedersen J.I.
        • et al.
        Intake of trans fatty acids from partially hydrogenated vegetable and fish oils and ruminant fat in relation to cancer risk.
        Int J Cancer. 2013; 132: 1389-1403
        • Vinikoor L.C.
        • Millikan R.C.
        • Satia J.A.
        • et al.
        Trans-fatty acid consumption and its association with distal colorectal cancer in the North Carolina Colon Cancer Study II.
        Cancer Causes Control. 2010; 21: 171-180
        • Magee E.A.
        • Richardson C.J.
        • Hughes R.
        • et al.
        Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans.
        Am J Clin Nutr. 2000; 72: 1488-1494
        • Florin T.
        • Neale G.
        • Gibson G.R.
        • et al.
        Metabolism of dietary sulphate: absorption and excretion in humans.
        Gut. 1991; 32: 766-773
        • Gibson G.R.
        • Cummings J.H.
        • Macfarlane G.T.
        Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine.
        J Appl Bacteriol. 1988; 65: 241-247
        • Pitcher M.C.
        • Beatty E.R.
        • Cummings J.H.
        The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis.
        Gut. 2000; 46: 64-72
        • Tilg H.
        • Kaser A.
        Diet and relapsing ulcerative colitis: take off the meat?.
        Gut. 2004; 53: 1399-1401
        • Roediger W.E.
        • Moore J.
        • Babidge W.
        Colonic sulfide in pathogenesis and treatment of ulcerative colitis.
        Dig Dis Sci. 1997; 42: 1571-1579
        • Rowan F.E.
        • Docherty N.G.
        • Coffey J.C.
        • et al.
        Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis.
        Br J Surg. 2009; 96: 151-158
        • Huycke M.M.
        • Gaskins H.R.
        Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models.
        Exp Biol Med (Maywood). 2004; 229: 586-597
        • Deplancke B.
        • Gaskins H.R.
        Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells.
        FASEB J. 2003; 17: 1310-1312
        • Attene-Ramos M.S.
        • Wagner E.D.
        • Gaskins H.R.
        • et al.
        Hydrogen sulfide induces direct radical-associated DNA damage.
        Mol Cancer Res. 2007; 5: 455-459
        • Ramasamy S.
        • Singh S.
        • Taniere P.
        • et al.
        Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation.
        Am J Physiol Gastrointest Liver Physiol. 2006; 291: G288-G296
        • Cai W.J.
        • Wang M.J.
        • Ju L.H.
        • et al.
        Hydrogen sulfide induces human colon cancer cell proliferation: role of Akt, ERK and p21.
        Cell Biol Int. 2010; 34: 565-572
        • Carbonero F.
        • Benefiel A.C.
        • Gaskins H.R.
        Contributions of the microbial hydrogen economy to colonic homeostasis.
        Nat Rev Gastroenterol Hepatol. 2012; 9: 504-518
        • Wu Y.C.
        • Wang X.J.
        • Yu L.
        • et al.
        Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells.
        PLoS One. 2012; 7: e37572
        • Jowett S.L.
        • Seal C.J.
        • Pearce M.S.
        • et al.
        Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study.
        Gut. 2004; 53: 1479-1484
        • Cohen A.B.
        • Lee D.
        • Long M.D.
        • et al.
        Dietary patterns and self-reported associations of diet with symptoms of inflammatory bowel disease.
        Dig Dis Sci. 2013; 58: 1322-1328
        • Jantchou P.
        • Morois S.
        • Clavel-Chapelon F.
        • et al.
        Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study.
        Am J Gastroenterol. 2010; 105: 2195-2201
        • Albenberg L.G.
        • Wu G.D.
        Diet and the intestinal microbiome: associations, functions, and implications for health and disease.
        Gastroenterology. 2014; 146: 1564-1572
        • Spooren C.E.
        • Pierik M.J.
        • Zeegers M.P.
        • et al.
        Review article: the association of diet with onset and relapse in patients with inflammatory bowel disease.
        Aliment Pharmacol Ther. 2013; 38: 1172-1187
        • Roediger W.E.
        • Duncan A.
        • Kapaniris O.
        • et al.
        Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis.
        Gastroenterology. 1993; 104: 802-809
        • Vinolo M.A.
        • Rodrigues H.G.
        • Hatanaka E.
        • et al.
        Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites.
        Clin Sci (Lond). 2009; 117: 331-338
        • Zeng H.
        • Combs Jr., G.F.
        Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion.
        J Nutr Biochem. 2008; 19: 1-7
        • Fenwick G.R.
        • Hanley A.B.
        The genus Allium–part 1.
        Crit Rev Food Sci Nutr. 1985; 22: 199-271
        • Fenwick G.R.
        • Heaney R.K.
        • Mullin W.J.
        Glucosinolates and their breakdown products in food and food plants.
        Crit Rev Food Sci Nutr. 1983; 18: 123-201
        • Milner J.A.
        Garlic: its anticarcinogenic and antitumorigenic properties.
        Nutr Rev. 1996; 54: S82-S86
        • Knowles L.M.
        • Milner J.A.
        Possible mechanism by which allyl sulfides suppress neoplastic cell proliferation.
        J Nutr. 2001; 131: 1061S-1066S
        • Smith T.K.
        • Lund E.K.
        • Johnson I.T.
        Inhibition of dimethylhydrazine-induced aberrant crypt foci and induction of apoptosis in rat colon following oral administration of the glucosinolate sinigrin.
        Carcinogenesis. 1998; 19: 267-273
        • Singh S.V.
        • Singh K.
        Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research.
        Carcinogenesis. 2012; 33: 1833-1842
        • Dinkova-Kostova A.T.
        • Kostov R.V.
        Glucosinolates and isothiocyanates in health and disease.
        Trends Mol Med. 2012; 18: 337-347
        • Fleischauer A.T.
        • Poole C.
        • Arab L.
        Garlic consumption and cancer prevention: meta-analyses of colorectal and stomach cancers.
        Am J Clin Nutr. 2000; 72: 1047-1052
        • Zhu B.
        • Zou L.
        • Qi L.
        • et al.
        Allium vegetables and garlic supplements do not reduce risk of colorectal cancer, based on meta-analysis of prospective studies.
        Clin Gastroenterol Hepatol. 2014; 12: 1991-2001
        • Ngo S.N.
        • Williams D.B.
        • Cobiac L.
        • et al.
        Does garlic reduce risk of colorectal cancer? A systematic review.
        J Nutr. 2007; 137: 2264-2269
        • Tse G.
        • Eslick G.D.
        Cruciferous vegetables and risk of colorectal neoplasms: a systematic review and meta-analysis.
        Nutr Cancer. 2014; 66: 128-139
        • Chan D.S.
        • Lau R.
        • Aune D.
        • et al.
        Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies.
        PLoS One. 2011; 6: e20456
        • Xu X.
        • Yu E.
        • Gao X.
        • et al.
        Red and processed meat intake and risk of colorectal adenomas: a meta-analysis of observational studies.
        Int J Cancer. 2013; 132: 437-448
        • Chao A.
        • Thun M.J.
        • Connell C.J.
        • et al.
        Meat consumption and risk of colorectal cancer.
        JAMA. 2005; 293: 172-182
        • Larsson S.C.
        • Rafter J.
        • Holmberg L.
        • et al.
        Red meat consumption and risk of cancers of the proximal colon, distal colon and rectum: the Swedish Mammography Cohort.
        Int J Cancer. 2005; 113: 829-834
        • Norat T.
        • Bingham S.
        • Ferrari P.
        • et al.
        Meat, fish, and colorectal cancer risk: the European Prospective Investigation into cancer and nutrition.
        J Natl Cancer Inst. 2005; 97: 906-916
        • Toyokuni S.
        Iron-induced carcinogenesis: the role of redox regulation.
        Free Radic Biol Med. 1996; 20: 553-566
        • Sesink A.L.
        • Termont D.S.
        • Kleibeuker J.H.
        • et al.
        Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme.
        Cancer Res. 1999; 59: 5704-5709
        • Cross A.J.
        • Pollock J.R.
        • Bingham S.A.
        Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat.
        Cancer Res. 2003; 63: 2358-2360
        • Tricker A.R.
        • Preussmann R.
        Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential.
        Mutat Res. 1991; 259: 277-289
        • Sinha R.
        • Knize M.G.
        • Salmon C.P.
        • et al.
        Heterocyclic amine content of pork products cooked by different methods and to varying degrees of doneness.
        Food Chem Toxicol. 1998; 36: 289-297
        • Sinha R.
        • Rothman N.
        • Brown E.D.
        • et al.
        High concentrations of the carcinogen 2-amino-1-methyl-6-phenylimidazo- [4,5-b]pyridine (PhIP) occur in chicken but are dependent on the cooking method.
        Cancer Res. 1995; 55: 4516-4519
        • Sinha R.
        • Rothman N.
        • Salmon C.P.
        • et al.
        Heterocyclic amine content in beef cooked by different methods to varying degrees of doneness and gravy made from meat drippings.
        Food Chem Toxicol. 1998; 36: 279-287
        • Ohgaki H.
        • Takayama S.
        • Sugimura T.
        Carcinogenicities of heterocyclic amines in cooked food.
        Mutat Res. 1991; 259: 399-410
        • Qiao L.
        • Feng Y.
        Intakes of heme iron and zinc and colorectal cancer incidence: a meta-analysis of prospective studies.
        Cancer Causes Control. 2013; 24: 1175-1183
        • Cross A.J.
        • Ferrucci L.M.
        • Risch A.
        • et al.
        A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association.
        Cancer Res. 2010; 70: 2406-2414
        • Balder H.F.
        • Vogel J.
        • Jansen M.C.
        • et al.
        Heme and chlorophyll intake and risk of colorectal cancer in The Netherlands cohort study.
        Cancer Epidemiol Biomarkers Prev. 2006; 15: 717-725
        • Dellavalle C.T.
        • Xiao Q.
        • Yang G.
        • et al.
        Dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women's Health Study.
        Int J Cancer. 2014; 134: 2917-2926
        • Loh Y.H.
        • Jakszyn P.
        • Luben R.N.
        • et al.
        N-nitroso compounds and cancer incidence: the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk study.
        Am J Clin Nutr. 2011; 93: 1053-1061
        • Barbir A.
        • Linseisen J.
        • Hermann S.
        • et al.
        Effects of phenotypes in heterocyclic aromatic amine (HCA) metabolism-related genes on the association of HCA intake with the risk of colorectal adenomas.
        Cancer Causes Control. 2012; 23: 1429-1442
        • Wu K.
        • Giovannucci E.
        • Byrne C.
        • et al.
        Meat mutagens and risk of distal colon adenoma in a cohort of U.S. men.
        Cancer Epidemiol Biomarkers Prev. 2006; 15: 1120-1125
        • Voutsinas J.
        • Wilkens L.R.
        • Franke A.
        • et al.
        Heterocyclic amine intake, smoking, cytochrome P450 1A2 and N-acetylation phenotypes, and risk of colorectal adenoma in a multiethnic population.
        Gut. 2013; 62: 416-422
        • Agudo A.
        • Peluso M.
        • Munnia A.
        • et al.
        Aromatic DNA adducts and risk of gastrointestinal cancers: a case-cohort study within the EPIC-Spain.
        Cancer Epidemiol Biomarkers Prev. 2012; 21: 685-692
        • Kabat G.C.
        • Miller A.B.
        • Jain M.
        • et al.
        A cohort study of dietary iron and heme iron intake and risk of colorectal cancer in women.
        Br J Cancer. 2007; 97: 118-122
        • Ollberding N.J.
        • Wilkens L.R.
        • Henderson B.E.
        • et al.
        Meat consumption, heterocyclic amines and colorectal cancer risk: the Multiethnic Cohort Study.
        Int J Cancer. 2012; 131: E1125-E1133
        • Diergaarde B.
        • Tiemersma E.W.
        • Braam H.
        • et al.
        Dietary factors and truncating APC mutations in sporadic colorectal adenomas.
        Int J Cancer. 2005; 113: 126-132
        • Gilsing A.M.
        • Fransen F.
        • de Kok T.M.
        • et al.
        Dietary heme iron and the risk of colorectal cancer with specific mutations in KRAS and APC.
        Carcinogenesis. 2013; 34: 2757-2766
        • Luchtenborg M.
        • Weijenberg M.P.
        • de Goeij A.F.
        • et al.
        Meat and fish consumption, APC gene mutations and hMLH1 expression in colon and rectal cancer: a prospective cohort study (The Netherlands).
        Cancer Causes Control. 2005; 16: 1041-1054
        • Lilla C.
        • Verla-Tebit E.
        • Risch A.
        • et al.
        Effect of NAT1 and NAT2 genetic polymorphisms on colorectal cancer risk associated with exposure to tobacco smoke and meat consumption.
        Cancer Epidemiol Biomarkers Prev. 2006; 15: 99-107
        • Chan A.T.
        • Tranah G.J.
        • Giovannucci E.L.
        • et al.
        Prospective study of N-acetyltransferase-2 genotypes, meat intake, smoking and risk of colorectal cancer.
        Int J Cancer. 2005; 115: 648-652
        • Le Marchand L.
        • Hankin J.H.
        • Wilkens L.R.
        • et al.
        Combined effects of well-done red meat, smoking, and rapid N-acetyltransferase 2 and CYP1A2 phenotypes in increasing colorectal cancer risk.
        Cancer Epidemiol Biomarkers Prev. 2001; 10: 1259-1266
        • Chen J.
        • Stampfer M.J.
        • Hough H.L.
        • et al.
        A prospective study of N-acetyltransferase genotype, red meat intake, and risk of colorectal cancer.
        Cancer Res. 1998; 58: 3307-3311
        • Nothlings U.
        • Yamamoto J.F.
        • Wilkens L.R.
        • et al.
        Meat and heterocyclic amine intake, smoking, NAT1 and NAT2 polymorphisms, and colorectal cancer risk in the multiethnic cohort study.
        Cancer Epidemiol Biomarkers Prev. 2009; 18: 2098-2106
        • Ananthakrishnan A.N.
        • Du M.
        • Berndt S.I.
        • et al.
        Red meat intake, NAT2, and risk of colorectal cancer: a pooled analysis of 11 studies.
        Cancer Epidemiol Biomarkers Prev. 2015; 24: 198-205
        • Shi Y.
        • Yu P.W.
        • Zeng D.Z.
        Dose-response meta-analysis of poultry intake and colorectal cancer incidence and mortality.
        Eur J Nutr. 2015; 54: 243-250
        • Wu S.
        • Feng B.
        • Li K.
        • et al.
        Fish consumption and colorectal cancer risk in humans: a systematic review and meta-analysis.
        Am J Med. 2012; 125: 551-559
        • Giovannucci E.
        • Rimm E.B.
        • Stampfer M.J.
        • et al.
        Intake of fat, meat, and fiber in relation to risk of colon cancer in men.
        Cancer Res. 1994; 54: 2390-2397
        • Daniel C.R.
        • Cross A.J.
        • Graubard B.I.
        • et al.
        Prospective investigation of poultry and fish intake in relation to cancer risk.
        Cancer Prev Res (Phila). 2011; 4: 1903-1911
        • Glinghammar B.
        • Venturi M.
        • Rowland I.R.
        • et al.
        Shift from a dairy product-rich to a dairy product-free diet: influence on cytotoxicity and genotoxicity of fecal water–potential risk factors for colon cancer.
        Am J Clin Nutr. 1997; 66: 1277-1282
        • Norat T.
        • Riboli E.
        Dairy products and colorectal cancer. A review of possible mechanisms and epidemiological evidence.
        Eur J Clin Nutr. 2003; 57: 1-17
        • Phillips R.L.
        • Snowdon D.A.
        Dietary relationships with fatal colorectal cancer among Seventh-Day Adventists.
        J Natl Cancer Inst. 1985; 74: 307-317
        • Ursin G.
        • Bjelke E.
        • Heuch I.
        • et al.
        Milk consumption and cancer incidence: a Norwegian prospective study.
        Br J Cancer. 1990; 61: 454-459
        • Kampman E.
        • Giovannucci E.
        • van 't Veer P.
        • et al.
        Calcium, vitamin D, dairy foods, and the occurrence of colorectal adenomas among men and women in two prospective studies.
        Am J Epidemiol. 1994; 139: 16-29
        • Singh P.N.
        • Fraser G.E.
        Dietary risk factors for colon cancer in a low-risk population.
        Am J Epidemiol. 1998; 148: 761-774
        • Larsson S.C.
        • Bergkvist L.
        • Wolk A.
        High-fat dairy food and conjugated linoleic acid intakes in relation to colorectal cancer incidence in the Swedish Mammography Cohort.
        Am J Clin Nutr. 2005; 82: 894-900
        • Hubner R.A.
        • Muir K.R.
        • Liu J.F.
        • et al.
        Dairy products, polymorphisms in the vitamin D receptor gene and colorectal adenoma recurrence.
        Int J Cancer. 2008; 123: 586-593
        • Park Y.
        • Leitzmann M.F.
        • Subar A.F.
        • et al.
        Dairy food, calcium, and risk of cancer in the NIH-AARP Diet and Health Study.
        Arch Intern Med. 2009; 169: 391-401
        • Lee S.A.
        • Shu X.O.
        • Yang G.
        • et al.
        Animal origin foods and colorectal cancer risk: a report from the Shanghai Women's Health Study.
        Nutr Cancer. 2009; 61: 194-205
        • Murphy N.
        • Norat T.
        • Ferrari P.
        • et al.
        Consumption of dairy products and colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC).
        PLoS One. 2013; 8: e72715
        • Aune D.
        • Lau R.
        • Chan D.S.
        • et al.
        Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies.
        Ann Oncol. 2012; 23: 37-45
        • Bassaganya-Riera J.
        • Hontecillas R.
        • Horne W.T.
        • et al.
        Conjugated linoleic acid modulates immune responses in patients with mild to moderately active Crohn's disease.
        Clin Nutr. 2012; 31: 721-727
        • Hontecillas R.
        • Wannemeulher M.J.
        • Zimmerman D.R.
        • et al.
        Nutritional regulation of porcine bacterial-induced colitis by conjugated linoleic acid.
        J Nutr. 2002; 132: 2019-2027
        • Bassaganya-Riera J.
        • Reynolds K.
        • Martino-Catt S.
        • et al.
        Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease.
        Gastroenterology. 2004; 127: 777-791
        • Bassaganya-Riera J.
        • Hontecillas R.
        • Beitz D.C.
        Colonic anti-inflammatory mechanisms of conjugated linoleic acid.
        Clin Nutr. 2002; 21: 451-459
        • Kritchevsky D.
        Antimutagenic and some other effects of conjugated linoleic acid.
        Br J Nutr. 2000; 83: 459-465
        • Evans N.P.
        • Misyak S.A.
        • Schmelz E.M.
        • et al.
        Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARgamma.
        J Nutr. 2010; 140: 515-521
        • Park H.S.
        • Ryu J.H.
        • Ha Y.L.
        • et al.
        Dietary conjugated linoleic acid (CLA) induces apoptosis of colonic mucosa in 1,2-dimethylhydrazine-treated rats: a possible mechanism of the anticarcinogenic effect by CLA.
        Br J Nutr. 2001; 86: 549-555
        • Liew C.
        • Schut H.A.
        • Chin S.F.
        • et al.
        Protection of conjugated linoleic acids against 2-amino-3- methylimidazo[4,5-f]quinoline-induced colon carcinogenesis in the F344 rat: a study of inhibitory mechanisms.
        Carcinogenesis. 1995; 16: 3037-3043
        • Hague A.
        • Paraskeva C.
        The short-chain fatty acid butyrate induces apoptosis in colorectal tumour cell lines.
        Eur J Cancer Prev. 1995; 4: 359-364
        • McBain J.A.
        • Eastman A.
        • Nobel C.S.
        • et al.
        Apoptotic death in adenocarcinoma cell lines induced by butyrate and other histone deacetylase inhibitors.
        Biochem Pharmacol. 1997; 53: 1357-1368
        • van der Pols J.C.
        • Bain C.
        • Gunnell D.
        • et al.
        Childhood dairy intake and adult cancer risk: 65-y follow-up of the Boyd Orr cohort.
        Am J Clin Nutr. 2007; 86: 1722-1729
        • Giovannucci E.
        • Rimm E.B.
        • Liu Y.
        • et al.
        Height, predictors of C-peptide and cancer risk in men.
        Int J Epidemiol. 2004; 33: 217-225
        • McMillen I.C.
        • Robinson J.S.
        Developmental origins of the metabolic syndrome: prediction, plasticity, and programming.
        Physiol Rev. 2005; 85: 571-633
        • Subramanian S.
        • Huq S.
        • Yatsunenko T.
        • et al.
        Persistent gut microbiota immaturity in malnourished Bangladeshi children.
        Nature. 2014; 510: 417-421
        • Gluckman P.D.
        • Hanson M.A.
        • Cooper C.
        • et al.
        Effect of in utero and early-life conditions on adult health and disease.
        N Engl J Med. 2008; 359: 61-73
        • Meydani S.N.
        • Ha W.K.
        Immunologic effects of yogurt.
        Am J Clin Nutr. 2000; 71: 861-872
        • Zhang X.B.
        • Ohta Y.
        Antimutagenicity of cell fractions of microorganisms on potent mutagenic pyrolysates.
        Mutat Res. 1993; 298: 247-253
        • Wollowski I.
        • Ji S.T.
        • Bakalinsky A.T.
        • et al.
        Bacteria used for the production of yogurt inactivate carcinogens and prevent DNA damage in the colon of rats.
        J Nutr. 1999; 129: 77-82
        • Perdigon G.
        • Vintini E.
        • Alvarez S.
        • et al.
        Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria.
        J Dairy Sci. 1999; 82: 1108-1114
        • Kojima M.
        • Wakai K.
        • Tamakoshi K.
        • et al.
        Diet and colorectal cancer mortality: results from the Japan Collaborative Cohort study.
        Nutr Cancer. 2004; 50: 23-32
        • Pala V.
        • Sieri S.
        • Berrino F.
        • et al.
        Yogurt consumption and risk of colorectal cancer in the Italian European Prospective Investigation into Cancer and Nutrition cohort.
        Int J Cancer. 2011; 129: 2712-2719
        • Venema K.
        Intestinal fermentation of lactose and prebiotic lactose derivatives, including human milk oligosaccharides.
        Int Dairy J. 2012; 22: 123-140
        • Rasinpera H.
        • Forsblom C.
        • Enattah N.S.
        • et al.
        The C/C-13910 genotype of adult-type hypolactasia is associated with an increased risk of colorectal cancer in the Finnish population.
        Gut. 2005; 54: 643-647
        • Steinmetz K.A.
        • Potter J.D.
        Vegetables, fruit, and cancer. II. Mechanisms.
        Cancer Causes Control. 1991; 2: 427-442
        • Aune D.
        • Lau R.
        • Chan D.S.
        • et al.
        Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on meta-analysis of prospective studies.
        Gastroenterology. 2011; 141: 106-118
        • Lee J.E.
        • Chan A.T.
        Fruit, vegetables, and folate: cultivating the evidence for cancer prevention.
        Gastroenterology. 2011; 141: 16-20
        • Shibata A.
        • Paganinihill A.
        • Ross R.K.
        • et al.
        Intake of vegetables, fruits, beta-carotene, vitamin C and vitamin supplements and cancer incidence among the elderly: a prospective study.
        Br J Cancer. 1992; 66: 673-679
        • Thun M.J.
        • Calle E.E.
        • Namboodiri M.M.
        • et al.
        Risk factors for fatal colon cancer in a large prospective study.
        J Natl Cancer Inst. 1992; 84: 1491-1500