Advertisement
Original Research Full Report: Basic and Translational—Alimentary Tract| Volume 148, ISSUE 4, P794-805, April 01, 2015

Identification of Risk Loci for Crohn’s Disease Phenotypes Using a Genome-Wide Association Study

Published:December 31, 2014DOI:https://doi.org/10.1053/j.gastro.2014.12.030

      Background & Aims

      Crohn’s disease is a highly heterogeneous inflammatory bowel disease comprising multiple clinical phenotypes. Genome-wide association studies (GWASs) have associated a large number of loci with disease risk but have not associated any specific genetic variants with clinical phenotypes. We performed a GWAS of clinical phenotypes in Crohn’s disease.

      Methods

      We genotyped 576,818 single-nucleotide polymorphisms in a well-characterized cohort of 1090 Crohn’s disease patients of European ancestry. We assessed their association with 17 phenotypes of Crohn’s disease (based on disease location, disease behavior, disease course, age at onset, and extraintestinal manifestations). A total of 57 markers with strong associations to Crohn’s disease phenotypes (P < 2 × 10-4) were subsequently analyzed in an independent replication cohort of 1296 patients of European ancestry.

      Results

      We replicated the association of 4 loci with different Crohn’s disease phenotypes. Variants in MAGI1, CLCA2, 2q24.1, and LY75 loci were associated with a complicated stricturing disease course (Pcombined = 2.01 × 10-8), disease location (Pcombined = 1.3 × 10-6), mild disease course (Pcombined = 5.94 × 10-7), and erythema nodosum (Pcombined = 2.27 × 10-6), respectively.

      Conclusions

      In a GWAS, we associated 4 loci with clinical phenotypes of Crohn’s disease. These findings indicate a genetic basis for the clinical heterogeneity observed for this inflammatory bowel disease.

      Keywords

      Abbreviations used in this paper:

      B1 (inflammatory behavior), B2 (stricturing behavior), B3 (penetrating behavior), CD (Crohn’s disease), CDC (complicated disease course), CI (confidence interval), eQTL (expression quantitative trait loci), GWAS (genome-wide association study), IMIDC (Immune-Mediated Inflammatory Disease Consortium), L1 (ileal location), L2 (colonic location), L3 (ileocolonic location), L4 (upper disease), MAF (minor allele frequency), MDC (mild disease course), QC (quality control), OR (odds ratio), SNP (single-nucleotide polymorphism), TNF (tumor necrosis factor), UC (ulcerative colitis)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cosnes J.
        • Gower–Rousseau C.
        • Seksik P.
        • et al.
        Epidemiology and natural history of inflammatory bowel diseases.
        Gastroenterology. 2011; 140: 1785-1794.e4
        • Xavier R.J.
        • Podolsky D.K.
        Unravelling the pathogenesis of inflammatory bowel disease.
        Nature. 2007; 448: 427-434
        • Jostins L.
        • Ripke S.
        • Weersma R.K.
        • et al.
        Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease.
        Nature. 2012; 491: 119-124
        • Khor B.
        • Gardet A.
        • Xavier R.J.
        Genetics and pathogenesis of inflammatory bowel disease.
        Nature. 2011; 474: 307-317
        • Satsangi J.
        • Silverberg M.S.
        • Vermeire S.
        • et al.
        The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications.
        Gut. 2006; 55: 749-753
        • Bayless T.M.
        • Tokayer A.Z.
        • Polito 2nd, J.M.
        • et al.
        Crohn's disease: concordance for site and clinical type in affected family members–potential hereditary influences.
        Gastroenterology. 1996; 111: 573-579
        • Colombel J.F.
        • Grandbastien B.
        • Gower-Rousseau C.
        • et al.
        Clinical characteristics of Crohn's disease in 72 families.
        Gastroenterology. 1996; 111: 604-607
        • Durães C.
        • Machado J.C.
        • Portela F.
        • et al.
        Phenotype–genotype profiles in Crohn's disease predicted by genetic markers in autophagy-related genes (GOIA study II).
        Inflamm Bowel Dis. 2012; 19: 230-239
        • Cummings J.R.F.
        • Cooney R.M.
        • Clarke G.
        • et al.
        The genetics of NOD-like receptors in Crohn's disease.
        Tissue Antigens. 2010; 76: 48-56
        • Eglinton T.W.
        • Roberts R.
        • Pearson J.
        • et al.
        Clinical and genetic risk factors for perianal Crohn's disease in a population-based cohort.
        Am J Gastroenterol. 2012; 107: 589-596
        • Jung C.
        • Colombel J.-F.
        • Lemann M.
        • et al.
        Genotype/phenotype analyses for 53 Crohn’s disease associated genetic polymorphisms.
        PLoS One. 2012; 7: e52223
        • Lee J.C.
        • Espéli M.
        • Anderson C.A.
        • et al.
        Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-regulated pathway.
        Cell. 2013; 155: 57-69
        • Adler J.
        • Rangwalla S.C.
        • Dwamena B.A.
        • et al.
        The prognostic power of the NOD2 genotype for complicated Crohn's disease: a meta-analysis.
        Am J Gastroenterol. 2011; 106: 699-712
        • Economou M.
        • Trikalinos T.A.
        • Loizou K.T.
        • et al.
        Differential effects of NOD2 variants on Crohn's disease risk and phenotype in diverse populations: a metaanalysis.
        Am J Gastroenterol. 2004; 99: 2393-2404
        • Julia A.
        • Domenech E.
        • Ricart E.
        • et al.
        A genome-wide association study on a southern European population identifies a new Crohn's disease susceptibility locus at RBX1-EP300.
        Gut. 2013; 62: 1440-1445
        • Lennard-Jones J.E.
        Classification of inflammatory bowel disease.
        Scand J Gastroenterol Suppl. 1989; 170 (discussion 16–19): 2-6
        • Chaparro M.
        • Panes J.
        • Garcia V.
        • et al.
        Long-term durability of infliximab treatment in Crohn's disease and efficacy of dose “escalation” in patients losing response.
        J Clin Gastroenterol. 2011; 45: 113-118
        • Price A.L.
        • Patterson N.J.
        • Plenge R.M.
        • et al.
        Principal components analysis corrects for stratification in genome-wide association studies.
        Nat Genet. 2006; 38: 904-909
        • Delaneau O.
        • Zagury J.-F.
        • Marchini J.
        Improved whole-chromosome phasing for disease and population genetic studies.
        Nat Methods. 2013; 10: 5-6
        • Howie B.
        • Marchini J.
        • Stephens M.
        Genotype imputation with thousands of genomes.
        G3 (Bethesda). 2011; 1: 457-470
        • The 1000 Genomes Project Consortium
        An integrated map of genetic variation from 1,092 human genomes.
        Nature. 2012; 491: 56-65
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • et al.
        PLINK: a tool set for whole-genome association and population-based linkage analyses.
        Am J Hum Genet. 2007; 81: 559-575
        • McCarthy M.I.
        • Abecasis G.R.
        • Cardon L.R.
        • et al.
        Genome-wide association studies for complex traits: consensus, uncertainty and challenges.
        Nat Rev Genet. 2008; 9: 356-369
        • Kellis M.
        • Wold B.
        • Snyder M.P.
        • et al.
        Defining functional DNA elements in the human genome.
        Proc Natl Acad Sci U S A. 2014; 111: 6131-6138
        • Kabakchiev B.
        • Silverberg M.S.
        Expression quantitative trait loci analysis identifies associations between genotype and gene expression in human intestine.
        Gastroenterology. 2013; 144: 1488-1496.e3
        • Therneau T.M.
        Modeling survival data: extending the Cox model.
        Springer, Rochester, MN2000
      1. R Core Team. R: a language and environment for statistical computing. Vienna, Austria 2013.

        • Luna A.
        • Nicodemus K.K.
        snp.plotter: an R-based SNP/haplotype association and linkage disequilibrium plotting package.
        Bioinformatics. 2007; 23: 774-776
        • Koslowski M.J.
        • Kubler I.
        • Chamaillard M.
        • et al.
        Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn's disease.
        PLoS One. 2009; 4: e4496
        • Dambacher J.
        • Staudinger T.
        • Seiderer J.
        • et al.
        Macrophage migration inhibitory factor (MIF)–173G/C promoter polymorphism influences upper gastrointestinal tract involvement and disease activity in patients with Crohn's disease.
        Inflamm Bowel Dis. 2007; 13: 71-82
        • Fowler S.A.
        • Ananthakrishnan A.N.
        • Gardet A.
        • et al.
        SMAD3 gene variant is a risk factor for recurrent surgery in patients with Crohn's disease.
        J Crohns Colitis. 2014; 8: 845-851
        • Marcil V.
        • Sinnett D.
        • Seidman E.
        • et al.
        Association between genetic variants in the HNF4A gene and childhood-onset Crohn's disease.
        Genes Immun. 2012; 13: 556-565
        • Zeller T.
        • Wild P.
        • Szymczak S.
        • et al.
        Genetics and beyond–the transcriptome of human monocytes and disease susceptibility.
        PLoS One. 2010; 5: e10693
        • Dobrosotskaya I.
        • Guy R.K.
        • James G.L.
        MAGI-1, a membrane-associated guanylate kinase with a unique arrangement of protein-protein interaction domains.
        J Biol Chem. 1997; 272: 31589-31597
        • Hirabayashi S.
        • Tajima M.
        • Yao I.
        • et al.
        JAM4, a junctional cell adhesion molecule interacting with a tight junction protein, MAGI-1.
        Mol Cell Biol. 2003; 23: 4267-4282
        • Laura R.P.
        • Ross S.
        • Koeppen H.
        • et al.
        MAGI-1: a widely expressed, alternatively spliced tight junction protein.
        Exp Cell Res. 2002; 275: 155-170
        • Shen L.
        • Weber C.R.
        • Raleigh D.R.
        • et al.
        Tight junction pore and leak pathways: a dynamic duo.
        Annu Rev Physiol. 2011; 73: 283-309
        • Tajima M.
        • Hirabayashi S.
        • Yao I.
        • et al.
        Roles of immunoglobulin-like loops of junctional cell adhesion molecule 4; involvement in the subcellular localization and the cell adhesion.
        Genes Cells. 2003; 8: 759-768
        • Garrido-Urbani S.
        • Bradfield P.F.
        • Imhof B.A.
        Tight junction dynamics: the role of junctional adhesion molecules (JAMs).
        Cell Tissue Res. 2014; 355: 701-715
        • Henderson P.
        • van Limbergen J.E.
        • Schwarze J.
        • et al.
        Function of the intestinal epithelium and its dysregulation in inflammatory bowel disease.
        Inflamm Bowel Dis. 2011; 17: 382-395
        • Marchiando A.M.
        • Graham W.V.
        • Turner J.R.
        Epithelial barriers in homeostasis and disease.
        Ann Rev Pathol. 2010; 5: 119-144
        • Turner J.R.
        Intestinal mucosal barrier function in health and disease.
        Nat Rev Immunol. 2009; 9: 799-809
        • Clayburgh D.R.
        • Shen L.
        • Turner J.R.
        A porous defense: the leaky epithelial barrier in intestinal disease.
        Lab Invest. 2004; 84: 282-291
        • McGuckin M.A.
        • Eri R.
        • Simms L.A.
        • et al.
        Intestinal barrier dysfunction in inflammatory bowel diseases.
        Inflamm Bowel Dis. 2009; 15: 100-113
        • Sawada N.
        Tight junction-related human diseases.
        Pathol Int. 2013; 63: 1-12
        • Benjamin J.
        • Makharia G.K.
        • Ahuja V.
        • et al.
        Intestinal permeability and its association with the patient and disease characteristics in Crohn's disease.
        World J Gastroenterol. 2008; 14: 1399-1405
        • Gassler N.
        • Rohr C.
        • Schneider A.
        • et al.
        Inflammatory bowel disease is associated with changes of enterocytic junctions.
        Am J Physiol Gastrointest Liver Physiol. 2001; 281: G216-G228
        • Peeters M.
        • Geypens B.
        • Claus D.
        • et al.
        Clustering of increased small intestinal permeability in families with Crohn's disease.
        Gastroenterology. 1997; 113: 802-807
        • Luissint A.-C.
        • Nusrat A.
        • Parkos C.
        JAM-related proteins in mucosal homeostasis and inflammation.
        Semin Immunopathol. 2014; 36: 211-226
        • Peterson L.W.
        • Artis D.
        Intestinal epithelial cells: regulators of barrier function and immune homeostasis.
        Nat Rev Immunol. 2014; 14: 141-153
        • Granlund Av
        • Flatberg A.
        • Østvik A.E.
        • et al.
        Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between Crohn's disease and ulcerative colitis.
        PLoS One. 2013; 8: e56818
        • Haritunians T.
        • Taylor K.D.
        • Targan S.R.
        • et al.
        Genetic predictors of medically refractory ulcerative colitis.
        Inflamm Bowel Dis. 2010; 16: 1830-1840
        • Jauregi-Miguel A.
        • Fernandez-Jimenez N.
        • Irastorza I.
        • et al.
        Alteration of tight junction gene expression in Celiac disease.
        J Pediatr Gastroenterol Nutr. 2014; 58: 762-767
      2. Norén E, Almer S, Söderman J. Association between genetic markers related to tight junctions and inflammatory bowel disease. 9th Congress of ECCO 2014;P664 (European Crohn's and Colitis Organisation, Vienna, Austria).

        • Kobayashi A.
        • Donaldson D.S.
        • Kanaya T.
        • et al.
        Identification of novel genes selectively expressed in the follicle-associated epithelium from the meta-analysis of transcriptomics data from multiple mouse cell and tissue populations.
        DNA Res. 2012; 19: 407-422
        • Mabbott N.A.
        • Donaldson D.S.
        • Ohno H.
        • et al.
        Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium.
        Mucosal Immunol. 2013; 6: 666-677
        • Bustin S.A.
        • Li S.R.
        • Dorudi S.
        Expression of the Ca2+-activated chloride channel genes CLCA1 and CLCA2 is downregulated in human colorectal cancer.
        DNA Cell Biol. 2001; 20: 331-338
        • Suzuki R.
        • Miyamoto S.
        • Yasui Y.
        • et al.
        Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate.
        BMC Cancer. 2007; 7: 84
        • Schafer P.H.
        • Parton A.
        • Gandhi A.K.
        • et al.
        Apremilast, a cAMP phosphodiesterase-4 inhibitor, demonstrates anti-inflammatory activity in vitro and in a model of psoriasis.
        Br J Pharmacol. 2010; 159: 842-855
        • Salari P.
        • Abdollahi M.
        Phosphodiesterase inhibitors in inflammatory bowel disease.
        Expert Opin Investig Drugs. 2012; 21: 261-264
        • Shrimpton R.E.
        • Butler M.
        • Morel A.S.
        • et al.
        CD205 (DEC-205): a recognition receptor for apoptotic and necrotic self.
        Mol Immunol. 2009; 46: 1229-1239
        • Inaba K.
        • Swiggard W.J.
        • Inaba M.
        • et al.
        Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145: I. Expression on dendritic cells and other subsets of mouse leukocytes.
        Cell Immunol. 1995; 163: 148-156
        • Tel J.
        • Benitez-Ribas D.
        • Hoosemans S.
        • et al.
        DEC-205 mediates antigen uptake and presentation by both resting and activated human plasmacytoid dendritic cells.
        Eur J Immunol. 2011; 41: 1014-1023