Advertisement
Modification of the Gut Microbiome to Maintain Health or Treat Disease| Volume 146, ISSUE 6, P1564-1572, May 01, 2014

Diet and the Intestinal Microbiome: Associations, Functions, and Implications for Health and Disease

  • Lindsey G. Albenberg
    Affiliations
    Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
    Search for articles by this author
  • Gary D. Wu
    Correspondence
    Reprint requests Address requests for reprints to: Gary D. Wu, MD, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 915 BRB II/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104. fax: (215) 573-2024.
    Affiliations
    Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
Published:February 06, 2014DOI:https://doi.org/10.1053/j.gastro.2014.01.058
      The mutual relationship between the intestinal microbiota and its mammalian host is influenced by diet. Consumption of various nutrients affects the structure of the microbial community and provides substrates for microbial metabolism. The microbiota can produce small molecules that are absorbed by the host and affect many important physiological processes. Age-dependent and societal differences in the intestinal microbiota could result from differences in diet. Examples include differences in the intestinal microbiota of breastfed vs formula-fed infants or differences in microbial richness in people who consume an agrarian plant-based vs a Western diet, which is high in meat and fat. We review how diet affects the structure and metabolome of the human intestinal microbiome and may contribute to health or the pathogenesis of disorders such as coronary vascular disease and inflammatory bowel disease.

      Keywords

      Abbreviations used in this paper:

      CD (Crohn's disease), EEN (exclusive enteral nutrition), IBD (inflammatory bowel disease), MOS (milk oligosaccharides), TMA (trimethylamine), TMAO (trimethylamine oxide), TPN (total parenteral nutrition), UC (ulcerative colitis)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dominguez-Bello M.G.
        • Blaser M.J.
        • Ley R.E.
        • et al.
        Development of the human gastrointestinal microbiota and insights from high-throughput sequencing.
        Gastroenterology. 2011; 140: 1713-1719
        • Dominguez-Bello M.G.
        • Costello E.K.
        • Contreras M.
        • et al.
        Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns.
        Proc Natl Acad Sci U S A. 2010; 107: 11971-11975
        • Koenig J.E.
        • Spor A.
        • Scalfone N.
        • et al.
        Succession of microbial consortia in the developing infant gut microbiome.
        Proc Natl Acad Sci U S A. 2011; 108: 4578-4585
        • Yatsunenko T.
        • Rey F.E.
        • Manary M.J.
        • et al.
        Human gut microbiome viewed across age and geography.
        Nature. 2012; 486: 222-227
        • Penders J.
        • Thijs C.
        • Vink C.
        • et al.
        Factors influencing the composition of the intestinal microbiota in early infancy.
        Pediatrics. 2006; 118: 511-521
        • Stark P.L.
        • Lee A.
        The microbial ecology of the large bowel of breast-fed and formula-fed infants during the first year of life.
        J Med Microbiol. 1982; 15: 189-203
        • Yoshioka H.
        • Iseki K.
        • Fujita K.
        Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants.
        Pediatrics. 1983; 72: 317-321
        • Le Huerou-Luron I.
        • Blat S.
        • Boudry G.
        Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects.
        Nutr Res Rev. 2010; 23: 23-36
        • Hernell O.
        Human milk vs. cow's milk and the evolution of infant formulas.
        Nestle Nutr Workshop Ser Pediatr Program. 2011; 67: 17-28
        • LoCascio R.G.
        • Desai P.
        • Sela D.A.
        • et al.
        Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization.
        Appl Environ Microbiol. 2010; 76: 7373-7381
        • Balmer S.E.
        • Wharton B.A.
        Diet and faecal flora in the newborn: breast milk and infant formula.
        Arch Dis Child. 1989; 64: 1672-1677
        • Lievin V.
        • Peiffer I.
        • Hudault S.
        • et al.
        Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity.
        Gut. 2000; 47: 646-652
        • Fukuda S.
        • Toh H.
        • Hase K.
        • et al.
        Bifidobacteria can protect from enteropathogenic infection through production of acetate.
        Nature. 2011; 469: 543-547
        • Ouwehand A.
        • Isolauri E.
        • Salminen S.
        The role of the intestinal microflora for the development of the immune system in early childhood.
        Eur J Nutr. 2002; 41: I32-I37
        • LoCascio R.G.
        • Ninonuevo M.R.
        • Freeman S.L.
        • et al.
        Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation.
        J Agric Food Chem. 2007; 55: 8914-8919
        • Marcobal A.
        • Barboza M.
        • Froehlich J.W.
        • et al.
        Consumption of human milk oligosaccharides by gut-related microbes.
        J Agric Food Chem. 2010; 58: 5334-5340
        • Sela D.A.
        • Li Y.
        • Lerno L.
        • et al.
        An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides.
        J Biol Chem. 2011; 286: 11909-11918
        • Zivkovic A.M.
        • German J.B.
        • Lebrilla C.B.
        • et al.
        Human milk glycobiome and its impact on the infant gastrointestinal microbiota.
        Proc Natl Acad Sci U S A. 2011; 108: 4653-4658
        • Stark P.L.
        • Lee A.
        Clostridia isolated from the feces of infants during the first year of life.
        J Pediatr. 1982; 100: 362-365
        • Harmsen H.J.
        • Wildeboer-Veloo A.C.
        • Raangs G.C.
        • et al.
        Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods.
        J Pediatr Gastroenterol Nutr. 2000; 30: 61-67
        • Stark P.L.
        • Lee A.
        • Parsonage B.D.
        Colonization of the large bowel by Clostridium difficile in healthy infants: quantitative study.
        Infect Immun. 1982; 35: 895-899
        • Marcobal A.
        • Barboza M.
        • Sonnenburg E.D.
        • et al.
        Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways.
        Cell Host Microbe. 2011; 10: 507-514
        • Veereman-Wauters G.
        • Staelens S.
        • Van de Broek H.
        • et al.
        Physiological and bifidogenic effects of prebiotic supplements in infant formulae.
        J Pediatr Gastroenterol Nutr. 2011; 52: 763-771
        • Hascoet J.M.
        • Hubert C.
        • Rochat F.
        • et al.
        Effect of formula composition on the development of infant gut microbiota.
        J Pediatr Gastroenterol Nutr. 2011; 52: 756-762
        • Braegger C.
        • Chmielewska A.
        • Decsi T.
        • et al.
        Supplementation of infant formula with probiotics and/or prebiotics: a systematic review and comment by the ESPGHAN committee on nutrition.
        J Pediatr Gastroenterol Nutr. 2011; 52: 238-250
        • Olszak T.
        • An D.
        • Zeissig S.
        • et al.
        Microbial exposure during early life has persistent effects on natural killer T cell function.
        Science. 2012; 336: 489-493
        • Virgin H.W.
        • Todd J.A.
        Metagenomics and personalized medicine.
        Cell. 2011; 147: 44-56
        • Ley R.E.
        • Hamady M.
        • Lozupone C.
        • et al.
        Evolution of mammals and their gut microbes.
        Science. 2008; 320: 1647-1651
        • Turnbaugh P.J.
        • Ley R.E.
        • Mahowald M.A.
        • et al.
        An obesity-associated gut microbiome with increased capacity for energy harvest.
        Nature. 2006; 444: 1027-1031
        • Wu G.D.
        • Chen J.
        • Hoffmann C.
        • et al.
        Linking long-term dietary patterns with gut microbial enterotypes.
        Science. 2011; 334: 105-108
        • David L.A.
        • Maurice C.F.
        • Carmody R.N.
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2014; 505: 559-563
        • Walker A.W.
        • Ince J.
        • Duncan S.H.
        • et al.
        Dominant and diet-responsive groups of bacteria within the human colonic microbiota.
        ISME J. 2011; 5: 220-230
        • Leitch E.C.
        • Walker A.W.
        • Duncan S.H.
        • et al.
        Selective colonization of insoluble substrates by human faecal bacteria.
        Environ Microbiol. 2007; 9: 667-679
        • Koropatkin N.M.
        • Cameron E.A.
        • Martens E.C.
        How glycan metabolism shapes the human gut microbiota.
        Nat Rev Microbiol. 2012; 10: 323-335
        • Sonnenburg J.L.
        • Xu J.
        • Leip D.D.
        • et al.
        Glycan foraging in vivo by an intestine-adapted bacterial symbiont.
        Science. 2005; 307: 1955-1959
        • De Filippo C.
        • Cavalieri D.
        • Di Paola M.
        • et al.
        Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.
        Proc Natl Acad Sci U S A. 2010; 107: 14691-14696
        • Lin A.
        • Bik E.M.
        • Costello E.K.
        • et al.
        Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States.
        PLoS One. 2013; 8: e53838
        • Arumugam M.
        • Raes J.
        • Pelletier E.
        • et al.
        Enterotypes of the human gut microbiome.
        Nature. 2011; 473: 174-180
        • Lozupone C.A.
        • Stombaugh J.I.
        • Gordon J.I.
        • et al.
        Diversity, stability and resilience of the human gut microbiota.
        Nature. 2012; 489: 220-230
        • Koren O.
        • Knights D.
        • Gonzalez A.
        • et al.
        A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets.
        PLoS Comput Biol. 2013; 9: e1002863
        • Faust K.
        • Sathirapongsasuti J.F.
        • Izard J.
        • et al.
        Microbial co-occurrence relationships in the human microbiome.
        PLoS Comput Biol. 2012; 8: e1002606
        • Claesson M.J.
        • Jeffery I.B.
        • Conde S.
        • et al.
        Gut microbiota composition correlates with diet and health in the elderly.
        Nature. 2012; 488: 178-184
        • Cotillard A.
        • Kennedy S.P.
        • Kong L.C.
        • et al.
        Dietary intervention impact on gut microbial gene richness.
        Nature. 2013; 500: 585-588
        • Le Chatelier E.
        • Nielsen T.
        • Qin J.
        • et al.
        Richness of human gut microbiome correlates with metabolic markers.
        Nature. 2013; 500: 541-546
        • Dollive S.
        • Peterfreund G.L.
        • Sherrill-Mix S.
        • et al.
        A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples.
        Genome Biol. 2012; 13: R60
        • Hoffmann C.
        • Dollive S.
        • Grunberg S.
        • et al.
        Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents.
        PLoS One. 2013; 8: e66019
        • Minot S.
        • Sinha R.
        • Chen J.
        • et al.
        The human gut virome: inter-individual variation and dynamic response to diet.
        Genome Res. 2011; 21: 1616-1625
        • Samuel B.S.
        • Gordon J.I.
        A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism.
        Proc Natl Acad Sci U S A. 2006; 103: 10011-10016
        • Iliev I.D.
        • Funari V.A.
        • Taylor K.D.
        • et al.
        Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis.
        Science. 2012; 336: 1314-1317
        • Craig W.J.
        Nutrition concerns and health effects of vegetarian diets.
        Nutr Clin Pract. 2010; 25: 613-620
        • Craig W.J.
        Health effects of vegan diets.
        Am J Clin Nutr. 2009; 89: 1627S-1633S
        • Hehemann J.H.
        • Correc G.
        • Barbeyron T.
        • et al.
        Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota.
        Nature. 2010; 464: 908-912
        • Holmes E.
        • Li J.V.
        • Marchesi J.R.
        • et al.
        Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk.
        Cell Metab. 2012; 16: 559-564
        • Maslowski K.M.
        • Vieira A.T.
        • Ng A.
        • et al.
        Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.
        Nature. 2009; 461: 1282-1286
        • Smith P.M.
        • Howitt M.R.
        • Panikov N.
        • et al.
        The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis.
        Science. 2013; 341: 569-573
        • Samuel B.S.
        • Shaito A.
        • Motoike T.
        • et al.
        Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41.
        Proc Natl Acad Sci U S A. 2008; 105: 16767-16772
        • Wang Z.
        • Klipfell E.
        • Bennett B.J.
        • et al.
        Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.
        Nature. 2011; 472: 57-63
        • Tang W.H.
        • Wang Z.
        • Levison B.S.
        • et al.
        Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.
        N Engl J Med. 2013; 368: 1575-1584
        • Koeth R.A.
        • Wang Z.
        • Levison B.S.
        • et al.
        Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.
        Nat Med. 2013; 19: 576-585
        • Craciun S.
        • Balskus E.P.
        Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme.
        Proc Natl Acad Sci U S A. 2012; 109: 21307-21312
        • Tremaroli V.
        • Backhed F.
        Functional interactions between the gut microbiota and host metabolism.
        Nature. 2012; 489: 242-249
        • Abraham C.
        • Cho J.H.
        Inflammatory bowel disease.
        N Engl J Med. 2009; 361: 2066-2078
        • Peterson D.A.
        • Frank D.N.
        • Pace N.R.
        • et al.
        Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases.
        Cell Host Microbe. 2008; 3: 417-427
        • Chapman-Kiddell C.A.
        • Davies P.S.
        • Gillen L.
        • et al.
        Role of diet in the development of inflammatory bowel disease.
        Inflamm Bowel Dis. 2010; 16: 137-151
        • Hou J.K.
        • Abraham B.
        • El-Serag H.
        Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature.
        Am J Gastroenterol. 2011; 106: 563-573
      1. Jowett SL SC, Pearce MS, et al. nfluence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study. Gut 2004;53:1479–1484.

        • Molodecky N.A.
        • Soon I.S.
        • Rabi D.M.
        • et al.
        Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review.
        Gastroenterology. 2012; 142 (quiz e30): 46-54.e42
        • Lashner B.A.
        Epidemiology of inflammatory bowel disease.
        Gastroenterol Clin North Am. 1995; 24: 467-474
        • Devkota S.
        • Wang Y.
        • Musch M.W.
        • et al.
        Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice.
        Nature. 2012; 487: 104-108
        • Sartor R.B.
        Gut microbiota: Diet promotes dysbiosis and colitis in susceptible hosts.
        Nat Rev Gastroenterol Hepatol. 2012; 9: 561-562
        • Trompette A.
        • Gollwitzer E.S.
        • Yadava K.
        • et al.
        Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis.
        Nat Med. 2014; 20: 159-166
        • Graham T.O.
        • Kandil H.M.
        Nutritional factors in inflammatory bowel disease.
        Gastroenterol Clin North Am. 2002; 31: 203-218
        • Muller J.M.
        • Keller H.W.
        • Erasmi H.
        • et al.
        Total parenteral nutrition as the sole therapy in Crohn's disease—a prospective study.
        Br J Surg. 1983; 70: 40-43
        • Greenberg G.R.
        • Fleming C.R.
        • Jeejeebhoy K.N.
        • et al.
        Controlled trial of bowel rest and nutritional support in the management of Crohn's disease.
        Gut. 1988; 29: 1309-1315
        • Crawford P.A.
        • Crowley J.R.
        • Sambandam N.
        • et al.
        Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation.
        Proc Natl Acad Sci U S A. 2009; 106: 11276-11281
        • Sandhu B.K.
        • Fell J.M.
        • Beattie R.M.
        • et al.
        Guidelines for the management of inflammatory bowel disease in children in the United Kingdom.
        J Pediatr Gastroenterol Nutr. 2010; 50: S1-S13
        • Caprilli R.
        • Gassull M.A.
        • Escher J.C.
        • et al.
        European evidence based consensus on the diagnosis and management of Crohn's disease: special situations.
        Gut. 2006; 55: i36-i58
        • Takagi S.
        • Utsunomiya K.
        • Kuriyama S.
        • et al.
        Effectiveness of an ‘half elemental diet’ as maintenance therapy for Crohn's disease: a randomized-controlled trial.
        Aliment Pharmacol Ther. 2006; 24: 1333-1340
        • Zachos M.
        • Tondeur M.
        • Griffiths A.M.
        Enteral nutritional therapy for inducing remission of Crohn's disease.
        Cochrane Database Syst Rev. 2001; : CD000542
        • Leach S.T.
        • Mitchell H.M.
        • Eng W.R.
        • et al.
        Sustained modulation of intestinal bacteria by exclusive enteral nutrition used to treat children with Crohn's disease.
        Aliment Pharmacol Ther. 2008; 28: 724-733
        • Lionetti P.
        • Callegari M.L.
        • Ferrari S.
        • et al.
        Enteral nutrition and microflora in pediatric Crohn's disease.
        JPEN J Parenter Enteral Nutr. 2005; 29 (discussion S175–S178, S184–S188): S173-S175