Advertisement

Meta'omic Analytic Techniques for Studying the Intestinal Microbiome

  • Xochitl C. Morgan
    Affiliations
    Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts

    The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
    Search for articles by this author
  • Curtis Huttenhower
    Correspondence
    Reprint requests Address requests for reprints to: Curtis Huttenhower, PhD, Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115. fax: (617) 432-5619.
    Affiliations
    Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts

    The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
    Search for articles by this author
Published:January 30, 2014DOI:https://doi.org/10.1053/j.gastro.2014.01.049
      Nucleotide sequencing has become increasingly common and affordable, and is now a vital tool for studies of the human microbiome. Comprehensive microbial community surveys such as MetaHit and the Human Microbiome Project have described the composition and molecular functional profile of the healthy (normal) intestinal microbiome. This knowledge will increase our ability to analyze host and microbial DNA (genome) and RNA (transcriptome) sequences. Bioinformatic and statistical tools then can be used to identify dysbioses that might cause disease, and potential treatments. Analyses that identify perturbations in specific molecules can leverage thousands of culture-based isolate genomes to contextualize culture-independent sequences, or may integrate sequence data with whole-community functional assays such as metaproteomic or metabolomic analyses. We review the state of available systems-level models for studies of the intestinal microbiome, along with analytic techniques and tools that can be used to determine its functional capabilities in healthy and unhealthy individuals.

      Keywords

      Abbreviations used in this paper:

      IBD (inflammatory bowel disease), PCR (polymerase chain reaction), rRNA (ribosomal RNA), tRNA (transfer RNA), WMS (whole-metagenome or metatranscriptome sequencing)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Savage D.C.
        Microbial ecology of the gastrointestinal tract.
        Ann Rev Microbiol. 1977; 31: 107-133
        • Sboner A.
        • Mu X.J.
        • Greenbaum D.
        • et al.
        The real cost of sequencing: higher than you think!.
        Genome Biol. 2011; 12: 125
        • Qin J.
        • Li R.
        • Raes J.
        • et al.
        A human gut microbial gene catalogue established by metagenomic sequencing.
        Nature. 2010; 464: 59-65
        • Human Microbiome Project Consortium
        Structure, function and diversity of the healthy human microbiome.
        Nature. 2012; 486: 207-214
        • Woese C.R.
        • Fox G.E.
        • Zablen L.
        • et al.
        Conservation of primary structure in 16S ribosomal RNA.
        Nature. 1975; 254: 83-86
        • Margulies M.
        • Egholm M.
        • Altman W.E.
        • et al.
        Genome sequencing in microfabricated high-density picolitre reactors.
        Nature. 2005; 437: 376-380
        • Sogin M.L.
        • Morrison H.G.
        • Huber J.A.
        • et al.
        Microbial diversity in the deep sea and the underexplored “rare biosphere”.
        Proc Natl Acad Sci U S A. 2006; 103: 12115-12120
        • Bentley D.R.
        • Balasubramanian S.
        • Swerdlow H.P.
        • et al.
        Accurate whole human genome sequencing using reversible terminator chemistry.
        Nature. 2008; 456: 53-59
        • Lazarevic V.
        • Whiteson K.
        • Huse S.
        • et al.
        Metagenomic study of the oral microbiota by Illumina high-throughput sequencing.
        J Microbiol Methods. 2009; 79: 266-271
        • Hamady M.
        • Knight R.
        Microbial community profiling for human microbiome projects: tools, techniques, and challenges.
        Genome Res. 2009; 19: 1141-1152
        • Jumpstart Consortium Human Microbiome Project Data Generation Working Group
        Evaluation of 16S rDNA-based community profiling for human microbiome research.
        PLoS One. 2012; 7: e39315
        • Degnan P.H.
        • Ochman H.
        Illumina-based analysis of microbial community diversity.
        ISME J. 2012; 6: 183-194
        • Kuczynski J.
        • Stombaugh J.
        • Walters W.A.
        • et al.
        Using QIIME to analyze 16S rRNA gene sequences from microbial communities.
        Curr Protoc Microbiol. 2012; (Chapter 1:Unit 1E 5)
        • Kozich J.J.
        • Westcott S.L.
        • Baxter N.T.
        • et al.
        Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform.
        Appl Environ Microbiol. 2013; 79: 5112-5120
        • Caporaso J.G.
        • Kuczynski J.
        • Stombaugh J.
        • et al.
        QIIME allows analysis of high-throughput community sequencing data.
        Nat Methods. 2010; 7: 335-336
        • Schloss P.D.
        • Westcott S.L.
        • Ryabin T.
        • et al.
        Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.
        Appl Environ Microbiol. 2009; 75: 7537-7541
        • Quince C.
        • Lanzen A.
        • Davenport R.J.
        • et al.
        Removing noise from pyrosequenced amplicons.
        BMC Bioinformatics. 2011; 12: 38
        • Willing B.P.
        • Dicksved J.
        • Halfvarson J.
        • et al.
        A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes.
        Gastroenterology. 2010; 139: 1844-1854.e1
        • Joossens M.
        • Huys G.
        • Cnockaert M.
        • et al.
        Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives.
        Gut. 2011; 60: 631-637
        • Segata N.
        • Izard J.
        • Waldron L.
        • et al.
        Metagenomic biomarker discovery and explanation.
        Genome Biol. 2011; 12: R60
        • Lee C.K.
        • Herbold C.W.
        • Polson S.W.
        • et al.
        Groundtruthing next-gen sequencing for microbial ecology-biases and errors in community structure estimates from PCR amplicon pyrosequencing.
        PLoS One. 2012; 7: e44224
        • Turnbaugh P.J.
        • Quince C.
        • Faith J.J.
        • et al.
        Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins.
        Proc Natl Acad Sci U S A. 2010; 107: 7503-7508
        • Langille M.G.
        • Zaneveld J.
        • Caporaso J.G.
        • et al.
        Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.
        Nat Biotechnol. 2013; 31: 814-821
        • Nilsson R.H.
        • Kristiansson E.
        • Ryberg M.
        • et al.
        Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification.
        Evol Bioinform Online. 2008; 4: 193-201
        • Hoffmann C.
        • Dollive S.
        • Grunberg S.
        • et al.
        Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents.
        PLoS One. 2013; 8: e66019
        • Tickle T.L.
        • Segata N.
        • Waldron L.
        • et al.
        Two-stage microbial community experimental design.
        ISME J. 2013; 7: 2330-2339
        • Morgan J.L.
        • Darling A.E.
        • Eisen J.A.
        Metagenomic sequencing of an in vitro-simulated microbial community.
        PLoS One. 2010; 5: e10209
        • Reyes A.
        • Semenkovich N.P.
        • Whiteson K.
        • et al.
        Going viral: next-generation sequencing applied to phage populations in the human gut.
        Nat Rev Microbiol. 2012; 10: 607-617
        • Reyes A.
        • Haynes M.
        • Hanson N.
        • et al.
        Viruses in the faecal microbiota of monozygotic twins and their mothers.
        Nature. 2010; 466: 334-338
        • Iliev I.D.
        • Funari V.A.
        • Taylor K.D.
        • et al.
        Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis.
        Science. 2012; 336: 1314-1317
        • Minot S.
        • Sinha R.
        • Chen J.
        • et al.
        The human gut virome: inter-individual variation and dynamic response to diet.
        Genome Res. 2011; 21: 1616-1625
        • Modi S.R.
        • Lee H.H.
        • Spina C.S.
        • et al.
        Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome.
        Nature. 2013; 499: 219-222
        • Zhang Z.
        • Li C.
        • Zhao X.
        • et al.
        Anti-Saccharomyces cerevisiae antibodies associate with phenotypes and higher risk for surgery in Crohn's disease: a meta-analysis.
        Dig Dis Sci. 2012; 57: 2944-2954
        • Murdoch T.B.
        • Xu W.
        • Stempak J.M.
        • et al.
        Pattern recognition receptor and autophagy gene variants are associated with development of antimicrobial antibodies in Crohn's disease.
        Inflamm Bowel Dis. 2012; 18: 1743-1748
        • Vetrovsky T.
        • Baldrian P.
        The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses.
        PLoS One. 2013; 8: e57923
        • Christensen H.
        • Nordentoft S.
        • Olsen J.E.
        Phylogenetic relationships of Salmonella based on rRNA sequences.
        Int J Syst Bacteriol. 1998; 48: 605-610
        • Segata N.
        • Huttenhower C.
        Toward an efficient method of identifying core genes for evolutionary and functional microbial phylogenies.
        PLoS One. 2011; 6: e24704
        • Brady A.
        • Salzberg S.L.
        Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models.
        Nat Methods. 2009; 6: 673-676
        • Boisvert S.
        • Raymond F.
        • Godzaridis E.
        • et al.
        Ray Meta: scalable de novo metagenome assembly and profiling.
        Genome Biol. 2012; 13: R122
        • Segata N.
        • Bornigen D.
        • Morgan X.C.
        • et al.
        PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes.
        Nat Commun. 2013; 4: 2304
        • Schloissnig S.
        • Arumugam M.
        • Sunagawa S.
        • et al.
        Genomic variation landscape of the human gut microbiome.
        Nature. 2013; 493: 45-50
        • Nijkamp J.F.
        • Pop M.
        • Reinders M.J.
        • et al.
        Exploring variation-aware contig graphs for (comparative) metagenomics using MaryGold.
        Bioinformatics. 2013; 29: 2826-2834
      1. Howe AC, Jansson J, Malfatti SA, et al. Assembling large, complex environmental metagenomes. http://arxiv:1212.2832.

        • Sharon I.
        • Morowitz M.J.
        • Thomas B.C.
        • et al.
        Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization.
        Genome Res. 2013; 23: 111-120
        • Namiki T.
        • Hachiya T.
        • Tanaka H.
        • et al.
        MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads.
        Nucleic Acids Res. 2012; 40: e155
        • Peng Y.
        • Leung H.C.
        • Yiu S.M.
        • et al.
        Meta-IDBA: a de novo assembler for metagenomic data.
        Bioinformatics. 2011; 27: i94-i101
        • Delcher A.L.
        • Bratke K.A.
        • Powers E.C.
        • et al.
        Identifying bacterial genes and endosymbiont DNA with Glimmer.
        Bioinformatics. 2007; 23: 673-679
        • Besemer J.
        • Lomsadze A.
        • Borodovsky M.
        GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions.
        Nucleic Acids Res. 2001; 29: 2607-2618
        • Abubucker S.
        • Segata N.
        • Goll J.
        • et al.
        Metabolic reconstruction for metagenomic data and its application to the human microbiome.
        PLoS Comput Biol. 2012; 8: e1002358
        • Meyer F.
        • Paarmann D.
        • D'Souza M.
        • et al.
        The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes.
        BMC Bioinformatics. 2008; 9: 386
        • Konwar K.M.
        • Hanson N.W.
        • Page A.P.
        • et al.
        MetaPathways: a modular pipeline for constructing pathway/genome databases from environmental sequence information.
        BMC Bioinformatics. 2013; 14: 202
        • Kanehisa M.
        The KEGG database.
        Novartis Foundation symposium. 2002; 247 (discussion 101–103, 119–128, 244–252): 91-101
        • Overbeek R.
        • Begley T.
        • Butler R.M.
        • et al.
        The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes.
        Nucleic Acids Res. 2005; 33: 5691-5702
        • Caspi R.
        • Altman T.
        • Dreher K.
        • et al.
        The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases.
        Nucleic Acids Res. 2012; 40: D742-D753
        • Tatusov R.L.
        • Galperin M.Y.
        • Natale D.A.
        • et al.
        The COG database: a tool for genome-scale analysis of protein functions and evolution.
        Nucleic Acids Res. 2000; 28: 33-36
        • Powell S.
        • Szklarczyk D.
        • Trachana K.
        • et al.
        eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges.
        Nucleic Acids Res. 2012; 40: D284-D289
        • Cantarel B.L.
        • Coutinho P.M.
        • Rancurel C.
        • et al.
        The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics.
        Nucleic Acids Res. 2009; 37: D233-D238
        • Morgan X.C.
        • Huttenhower C.
        Chapter 12: human microbiome analysis.
        PLoS Comput Biol. 2012; 8: e1002808
        • Lozupone C.A.
        • Knight R.
        Species divergence and the measurement of microbial diversity.
        FEMS Microbiol Rev. 2008; 32: 557-578
        • Chazdon R.L.
        • Colwell R.K.
        • Denslow J.S.
        • et al.
        Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica.
        in: Dallmeier F. Comiskey J.A. Forest biodiversity research, monitoring and modeling: conceptual background and Old World case studies. Parthenon Publishing, Paris1998: 285-309
        • Simpson E.H.
        Measurement of diversity.
        Nature. 1949; 163: 688
        • Zuur A.F.
        Principal coordinate analysis and non-metric multidimensional scaling. Analysing ecological data.
        Springer, New York2007: 259-264
        • Huse S.M.
        • Ye Y.
        • Zhou Y.
        • et al.
        A core human microbiome as viewed through 16S rRNA sequence clusters.
        PLoS One. 2012; 7: e34242
        • Morgan X.C.
        • Tickle T.L.
        • Sokol H.
        • et al.
        Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment.
        Genome Biol. 2012; 13: R79
        • White J.R.
        • Nagarajan N.
        • Pop M.
        Statistical methods for detecting differentially abundant features in clinical metagenomic samples.
        PLoS Comput Biol. 2009; 5: e1000352
        • Parks D.H.
        • Beiko R.G.
        Identifying biologically relevant differences between metagenomic communities.
        Bioinformatics. 2010; 26: 715-721
        • Paulson J.N.
        • Stine O.C.
        • Bravo H.C.
        • et al.
        Differential abundance analysis for microbial marker-gene surveys.
        Nat Methods. 2013; 10: 1200-1202
        • Gosalbes M.J.
        • Durban A.
        • Pignatelli M.
        • et al.
        Metatranscriptomic approach to analyze the functional human gut microbiota.
        PLoS One. 2011; 6: e17447
        • Samuel B.S.
        • Gordon J.I.
        A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism.
        Proc Natl Acad Sci U S A. 2006; 103: 10011-10016
        • Giannoukos G.
        • Ciulla D.M.
        • Huang K.
        • et al.
        Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes.
        Genome Biol. 2012; 13: R23
        • Shi Y.
        • Tyson G.W.
        • Eppley J.M.
        • et al.
        Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean.
        ISME J. 2011; 5: 999-1013
        • Leimena M.M.
        • Ramiro-Garcia J.
        • Davids M.
        • et al.
        A comprehensive metatranscriptome analysis pipeline and its validation using human small intestine microbiota datasets.
        BMC Genomics. 2013; 14: 530
        • Trapnell C.
        • Roberts A.
        • Goff L.
        • et al.
        Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.
        Nat Protoc. 2012; 7: 562-578
        • Mandlik A.
        • Livny J.
        • Robins W.P.
        • et al.
        RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression.
        Cell Host Microbe. 2011; 10: 165-174
        • Langmead B.
        • Salzberg S.L.
        Fast gapped-read alignment with Bowtie 2.
        Nat Methods. 2012; 9: 357-359
        • Verberkmoes N.C.
        • Russell A.L.
        • Shah M.
        • et al.
        Shotgun metaproteomics of the human distal gut microbiota.
        ISME J. 2009; 3: 179-189
        • Rooijers K.
        • Kolmeder C.
        • Juste C.
        • et al.
        An iterative workflow for mining the human intestinal metaproteome.
        BMC Genomics. 2011; 12: 6
        • Sokol H.
        • Seksik P.
        • Rigottier-Gois L.
        • et al.
        Specificities of the fecal microbiota in inflammatory bowel disease.
        Inflamm Bowel Dis. 2006; 12: 106-111
        • Kang S.
        • Denman S.E.
        • Morrison M.
        • et al.
        Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray.
        Inflamm Bowel Dis. 2010; 16: 2034-2042
        • Erickson A.R.
        • Cantarel B.L.
        • Lamendella R.
        • et al.
        Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn's disease.
        PLoS One. 2012; 7: e49138
        • Antunes L.C.
        • Han J.
        • Ferreira R.B.
        • et al.
        Effect of antibiotic treatment on the intestinal metabolome.
        Antimicrob Agents Chemother. 2011; 55: 1494-1503
        • Wang Z.
        • Klipfell E.
        • Bennett B.J.
        • et al.
        Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.
        Nature. 2011; 472: 57-63
        • Smith P.M.
        • Howitt M.R.
        • Panikov N.
        • et al.
        The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis.
        Science. 2013; 341: 569-573
        • Pett-Ridge J.
        • Weber P.K.
        NanoSIP: NanoSIMS applications for microbial biology.
        Methods Mol Biol. 2012; 881: 375-408
        • Berry D.
        • Stecher B.
        • Schintlmeister A.
        • et al.
        Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing.
        Proc Natl Acad Sci U S A. 2013; 110: 4720-4725
        • McDonnell L.A.
        • Heeren R.M.
        Imaging mass spectrometry.
        Mass Spectrom Rev. 2007; 26: 606-643
        • Hu P.
        • Janga S.C.
        • Babu M.
        • et al.
        Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins.
        PLoS Biol. 2009; 7: e96
        • Valour F.
        • Boisset S.
        • Lebras L.
        • et al.
        Clostridium sordellii brain abscess diagnosed by 16S rRNA gene sequencing.
        J Clin Microbiol. 2010; 48: 3443-3444
        • Flynn A.N.
        • Lyndon C.A.
        • Church D.L.
        Identification by 16S rRNA gene sequencing of an Actinomyces hongkongensis isolate recovered from a patient with pelvic actinomycosis.
        J Clin Microbiol. 2013; 51: 2721-2723
        • Chin C.S.
        • Sorenson J.
        • Harris J.B.
        • et al.
        The origin of the Haitian cholera outbreak strain.
        N Engl J Med. 2011; 364: 33-42
        • Hasan N.A.
        • Choi S.Y.
        • Eppinger M.
        • et al.
        Genomic diversity of 2010 Haitian cholera outbreak strains.
        Proc Natl Acad Sci U S A. 2012; 109: E2010-E2017
        • Schlaberg R.
        • Simmon K.E.
        • Fisher M.A.
        A systematic approach for discovering novel, clinically relevant bacteria.
        Emerg Infect Dis. 2012; 18: 422-430
        • Haiser H.J.
        • Gootenberg D.B.
        • Chatman K.
        • et al.
        Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta.
        Science. 2013; 341: 295-298
        • Wallace B.D.
        • Wang H.
        • Lane K.T.
        • et al.
        Alleviating cancer drug toxicity by inhibiting a bacterial enzyme.
        Science. 2010; 330: 831-835
      2. BioBakery. Available: http://huttenhower.sph.harvard.edu/biobakery. Accessed March 20, 2014.

        • Kuczynski J.
        • Lauber C.L.
        • Walters W.A.
        • et al.
        Experimental and analytical tools for studying the human microbiome.
        Nat Rev Genet. 2012; 13: 47-58
        • Henderson G.
        • Cox F.
        • Kittelmann S.
        • et al.
        Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities.
        PLoS One. 2013; 8: e74787
        • Borman A.M.
        • Palmer M.
        • Johnson E.M.
        Rapid methods for the extraction and archiving of molecular grade fungal genomic DNA.
        Methods Mol Biol. 2013; 968: 55-62
        • Thurber R.V.
        • Haynes M.
        • Breitbart M.
        • et al.
        Laboratory procedures to generate viral metagenomes.
        Nat Protoc. 2009; 4: 470-483
        • Walter J.
        • Ley R.
        The human gut microbiome: ecology and recent evolutionary changes.
        Ann Rev Microbiol. 2011; 65: 411-429
        • Sommer F.
        • Backhed F.
        The gut microbiota–masters of host development and physiology.
        Nat Rev Microbiol. 2013; 11: 227-238
        • Stearns J.C.
        • Lynch M.D.
        • Senadheera D.B.
        • et al.
        Bacterial biogeography of the human digestive tract.
        Sci Rep. 2011; 1: 170
        • Aguirre de Carcer D.
        • Cuiv P.O.
        • Wang T.
        • et al.
        Numerical ecology validates a biogeographical distribution and gender-based effect on mucosa-associated bacteria along the human colon.
        ISME J. 2011; 5: 801-809
        • Kuehbacher T.
        • Rehman A.
        • Lepage P.
        • et al.
        Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease.
        J Med Microbiol. 2008; 57: 1569-1576
        • Cecchini D.A.
        • Laville E.
        • Laguerre S.
        • et al.
        Functional metagenomics reveals novel pathways of prebiotic breakdown by human gut bacteria.
        PLoS One. 2013; 8: e72766
        • Baumgart M.
        • Dogan B.
        • Rishniw M.
        • et al.
        Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum.
        ISME J. 2007; 1: 403-418
        • McHardy I.
        • Goudarzi M.
        • Tong M.
        • et al.
        Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships.
        Microbiome. 2013; 1: 17
        • Sun S.
        • Chen J.
        • Li W.
        • et al.
        Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource.
        Nucleic Acids Res. 2011; 39: D546-D551
        • Blankenberg D.
        • Von Kuster G.
        • Coraor N.
        • et al.
        Galaxy: a web-based genome analysis tool for experimentalists.
        Curr Protoc Mol Biol. 2010; (Chapter 19:Unit 19.10.1–21)
        • Markowitz V.M.
        • Chen I.M.
        • Chu K.
        • et al.
        IMG/M: the integrated metagenome data management and comparative analysis system.
        Nucleic Acids Res. 2012; 40: D123-D129
        • Huson D.H.
        • Auch A.F.
        • Qi J.
        • et al.
        MEGAN analysis of metagenomic data.
        Genome Res. 2007; 17: 377-386
        • Goll J.
        • Rusch D.B.
        • Tanenbaum D.M.
        • et al.
        METAREP: JCVI metagenomics reports–an open source tool for high-performance comparative metagenomics.
        Bioinformatics. 2010; 26: 2631-2632
        • Arumugam M.
        • Harrington E.D.
        • Foerstner K.U.
        • et al.
        SmashCommunity: a metagenomic annotation and analysis tool.
        Bioinformatics. 2010; 26: 2977-2978
        • Huse S.M.
        • Mark Welch D.B.
        • Voorhis A.
        • et al.
        VAMPS: a website for visualization and analysis of microbial population structures.
        BMC Bioinformatics. 2014; 15: 41