Advertisement

Gastrointestinal Malignancy and the Microbiome

  • Maria T. Abreu
    Affiliations
    Division of Gastroenterology, Departments of Medicine and Microbiology and Immunology, University of Miami, Miami, Florida
    Search for articles by this author
  • Richard M. Peek Jr.
    Correspondence
    Reprint requests Address requests for reprints to: Richard Peek, MD, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, 1030C Medical Research Building IV, Nashville, Tennessee 37232. fax: (615) 343-6229.
    Affiliations
    Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, Tennessee
    Search for articles by this author
Published:January 08, 2014DOI:https://doi.org/10.1053/j.gastro.2014.01.001
      Microbial species participate in the genesis of a substantial number of malignancies—in conservative estimates, at least 15% of all cancer cases are attributable to infectious agents. Little is known about the contribution of the gastrointestinal microbiome to the development of malignancies. Resident microbes can promote carcinogenesis by inducing inflammation, increasing cell proliferation, altering stem cell dynamics, and producing metabolites such as butyrate, which affect DNA integrity and immune regulation. Studies in human beings and rodent models of cancer have identified effector species and relationships among members of the microbial community in the stomach and colon that increase the risk for malignancy. Strategies to manipulate the microbiome, or the immune response to such bacteria, could be developed to prevent or treat certain gastrointestinal cancers.

      Keywords

      Abbreviations used in this paper:

      AOM (azoxymethane), Apc (adenomatous polyposis coli), ASF (altered Schaedler’s flora), CRC (colorectal cancer), DSS (dextran sulfate sodium), GERD (gastroesophageal reflux disease), GI (gastrointestinal), HPV (human papilloma virus), IL (interleukin), INS-GAS (Insulin-Gastrin), JC (John Cunningham), LPS (lipopolysaccharide), NF-κB (nuclear factor κB), PAI (pathogenicity island), PRR (pattern recognition receptor), SCFA (short-chain fatty acid), SPF (specific pathogen-free), TLR (Toll-like receptor)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cho I.
        • Blaser M.J.
        The human microbiome: at the interface of health and disease.
        Nat Rev Genet. 2012; 13: 260-270
        • Plottel C.S.
        • Blaser M.J.
        Microbiome and malignancy.
        Cell Host Microbe. 2011; 10: 324-335
        • de Martel C.
        • Ferlay J.
        • Franceschi S.
        • et al.
        Global burden of cancers attributable to infections in 2008: a review and synthetic analysis.
        Lancet Oncol. 2012; 13: 607-615
        • Polk D.B.
        • Peek Jr., R.M.
        Helicobacter pylori: gastric cancer and beyond.
        Nat Rev Cancer. 2010; 10: 403-414
        • Wroblewski L.E.
        • Peek R.M.
        H. pylori in gastric carcinogenesis: mechanisms.
        Gastroenterol Clin North Am. 2013; 42: 285-298
        • Odenbreit S.
        • Puls J.
        • Sedlmaier B.
        • et al.
        Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion.
        Science. 2000; 287: 1497-1500
        • Fischer W.
        • Puls J.
        • Buhrdorf R.
        • et al.
        Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8.
        Mol Microbiol. 2001; 42: 1337-1348
        • Kwok T.
        • Zabler D.
        • Urman S.
        • et al.
        Helicobacter exploits integrin for type IV secretion and kinase activation.
        Nature. 2007; 449: 862-866
        • Shaffer C.L.
        • Gaddy J.A.
        • Loh J.T.
        • et al.
        Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface.
        PLoS Pathog. 2011; 7: e1002237
        • Blaser M.J.
        • Perez-Perez G.I.
        • Kleanthous H.
        • et al.
        Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach.
        Cancer Res. 1995; 55: 2111-2115
        • Mueller D.
        • Tegtmeyer N.
        • Brandt S.
        • et al.
        c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains.
        J Clin Invest. 2012; 122: 1553-1566
        • Higashi H.
        • Tsutsumi R.
        • Muto S.
        • et al.
        SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein.
        Science. 2002; 295: 683-686
        • Saadat I.
        • Higashi H.
        • Obuse C.
        • et al.
        Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity.
        Nature. 2007; 447: 330-333
        • Amieva M.R.
        • Vogelmann R.
        • Covacci A.
        • et al.
        Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA.
        Science. 2003; 300: 1430-1434
        • Franco A.T.
        • Israel D.A.
        • Washington M.K.
        • et al.
        Activation of ß-catenin by carcinogenic Helicobacter pylori.
        Proc Natl Acad Sci U S A. 2005; 102: 10646-10651
        • Murata-Kamiya N.
        • Kurashima Y.
        • Teishikata Y.
        • et al.
        Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells.
        Oncogene. 2007; 26: 4617-4626
        • Nagy T.A.
        • Wroblewski L.E.
        • Wang D.
        • et al.
        ß-Catenin and p120 mediate PPARdelta-dependent proliferation induced by Helicobacter pylori in human and rodent epithelia.
        Gastroenterology. 2011; 141: 553-564
        • Brandt S.
        • Kwok T.
        • Hartig R.
        • et al.
        NF-kB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein.
        Proc Natl Acad Sci U S A. 2005; 102: 9300-9305
        • Chaturvedi R.
        • Asim M.
        • Romero-Gallo J.
        • et al.
        Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA.
        Gastroenterology. 2011; 141: 1696-1708
        • Cover T.L.
        • Blanke S.R.
        Helicobacter pylori VacA, a paradigm for toxin multifunctionality.
        Nat Rev Microbiol. 2005; 3: 320-332
        • Atherton J.C.
        • Cao P.
        • Peek Jr., R.M.
        • et al.
        Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration.
        J Biol Chem. 1995; 270: 17771-17777
        • Rhead J.L.
        • Letley D.P.
        • Mohammadi M.
        • et al.
        A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer.
        Gastroenterology. 2007; 133: 926-936
        • Backert S.
        • Tegtmeyer N.
        The versatility of the Helicobacter pylori vacuolating cytotoxin VacA in signal transduction and molecular crosstalk.
        Toxins. 2010; 2: 69-92
        • Barker N.
        • Huch M.
        • Kujala P.
        • et al.
        Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro.
        Cell Stem Cell. 2010; 6: 25-36
        • Uehara T.
        • Ma D.
        • Yao Y.
        • et al.
        H. pylori infection is associated with DNA damage of Lgr5-positive epithelial stem cells in the stomach of patients with gastric cancer.
        Dig Dis Sci. 2013; 58: 140-149
        • Guruge J.L.
        • Falk P.G.
        • Lorenz R.G.
        • et al.
        Epithelial attachment alters the outcome of Helicobacter pylori infection.
        Proc Natl Acad Sci U S A. 1998; 95: 3925-3930
        • Syder A.J.
        • Guruge J.L.
        • Li Q.
        • et al.
        Helicobacter pylori attaches to NeuAc alpha 2,3Gal beta 1,4 glycoconjugates produced in the stomach of transgenic mice lacking parietal cells.
        Mol Cell. 1999; 3: 263-274
        • Syder A.J.
        • Oh J.D.
        • Guruge J.L.
        • et al.
        The impact of parietal cells on Helicobacter pylori tropism and host pathology: an analysis using gnotobiotic normal and transgenic mice.
        Proc Natl Acad Sci U S A. 2003; 100: 3467-3472
        • Oh J.D.
        • Kling-Backhed H.
        • Giannakis M.
        • et al.
        The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression.
        Proc Natl Acad Sci U S A. 2006; 103: 9999-10004
        • Tsugawa H.
        • Suzuki H.
        • Saya H.
        • et al.
        Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells.
        Cell Host Microbe. 2012; 12: 764-777
        • Noach L.A.
        • Bosma N.B.
        • Jansen J.
        • et al.
        Mucosal tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8 production in patients with Helicobacter pylori infection.
        Scand J Gastroenterol. 1994; 29: 425-429
        • El-Omar E.M.
        • Carrington M.
        • Chow W.H.
        • et al.
        Interleukin-1 polymorphisms associated with increased risk of gastric cancer.
        Nature. 2000; 404: 398-402
        • Figueiredo C.
        • Machado J.C.
        • Pharoah P.
        • et al.
        Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma.
        J Natl Cancer Inst. 2002; 94: 1680-1687
        • Garza-Gonzalez E.
        • Bosques-Padilla F.J.
        • El-Omar E.
        • et al.
        Role of the polymorphic IL-1B, IL-1RN, and TNF-a genes in distal gastric cancer in Mexico.
        Int J Cancer. 2005; 114: 237-241
        • Mayerle J.
        • den Hoed C.M.
        • Schurmann C.
        • et al.
        Identification of genetic loci associated with Helicobacter pylori serologic status.
        JAMA. 2013; 309: 1912-1920
        • Noto J.M.
        • Gaddy J.A.
        • Lee J.Y.
        • et al.
        Iron deficiency accelerates Helicobacter pylori-induced carcinogenesis in rodents and humans.
        J Clin Invest. 2013; 123: 479-492
        • Ma J.L.
        • Zhang L.
        • Brown L.M.
        • et al.
        Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality.
        J Natl Cancer Inst. 2012; 104: 488-492
        • Riley D.R.
        • Sieber K.B.
        • Robinson K.M.
        • et al.
        Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples.
        PLoS Comput Biol. 2013; 9: e1003107
        • Fox J.
        • Sheh A.
        The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis.
        Gut Microbes. 2013; 4: 30-55
        • Bik E.M.
        • Eckburg P.B.
        • Gill S.R.
        • et al.
        Molecular analysis of the bacterial microbiota in the human stomach.
        Proc Natl Acad Sci U S A. 2006; 103: 732-737
        • Andersson A.F.
        • Lindberg M.
        • Jakobsson H.
        • et al.
        Comparative analysis of human gut microbiota by barcoded pyrosequencing.
        PLoS One. 2008; 3: e2836
        • Maldonado-Contreras A.
        • Goldfarb K.C.
        • Godoy-Vitorino F.
        • et al.
        Structure of the human gastric bacterial community in relation to Helicobacter pylori status.
        ISME J. 2011; 5: 574-579
        • Yang I.
        • Nell S.
        • Suerbaum S.
        Survival in hostile territory: the microbiota of the stomach.
        FEMS Microbiol Rev. 2013; 37: 736-761
        • Dicksved J.
        • Lindberg M.
        • Rosenquist M.
        • et al.
        Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls.
        J Med Microbiol. 2009; 58: 509-516
        • Watanabe T.
        • Tada M.
        • Nagai H.
        • et al.
        Helicobacter pylori infection induces gastric cancer in mongolian gerbils.
        Gastroenterology. 1998; 115: 642-648
        • Honda S.
        • Fujioka T.
        • Tokieda M.
        • et al.
        Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils.
        Cancer Res. 1998; 58: 4255-4259
        • Ogura K.
        • Maeda S.
        • Nakao M.
        • et al.
        Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil.
        J Exp Med. 2000; 192: 1601-1610
        • Peek R.M.
        • Wirth H.P.
        • Moss S.F.
        • et al.
        Helicobacter pylori alters gastric epithelial cell cycle events and gastrin secretion in Mongolian gerbils.
        Gastroenterology. 2000; 118: 48-59
        • Israel D.A.
        • Salama N.
        • Arnold C.N.
        • et al.
        Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses.
        J Clin Invest. 2001; 107: 611-620
        • Franco A.T.
        • Johnston E.
        • Krishna U.
        • et al.
        Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors.
        Cancer Res. 2008; 68: 379-387

      References (Online-Only)

        • Sun Y.Q.
        • Monstein H.J.
        • Nilsson L.E.
        • et al.
        Profiling and identification of eubacteria in the stomach of Mongolian gerbils with and without Helicobacter pylori infection.
        Helicobacter. 2003; 8: 149-157
        • Osaki T.
        • Matsuki T.
        • Asahara T.
        • et al.
        Comparative analysis of gastric bacterial microbiota in Mongolian gerbils after long-term infection with Helicobacter pylori.
        Microb Pathog. 2012; 53: 12-18
        • Zavros Y.
        • Rieder G.
        • Ferguson A.
        • et al.
        Gastritis and hypergastrinemia due to Acinetobacter lwoffii in mice.
        Infect Immun. 2002; 70: 2630-2639
        • Rolig A.S.
        • Cech C.
        • Ahler E.
        • et al.
        The degree of Helicobacter pylori-triggered inflammation is manipulated by preinfection host microbiota.
        Infect Immun. 2013; 81: 1382-1389
        • Aebischer T.
        • Fischer A.
        • Walduck A.
        • et al.
        Vaccination prevents Helicobacter pylori-induced alterations of the gastric flora in mice.
        FEMS Immunol Med Microbiol. 2006; 46: 221-229
        • Tan M.P.
        • Kaparakis M.
        • Galic M.
        • et al.
        Chronic Helicobacter pylori infection does not significantly alter the microbiota of the murine stomach.
        Appl Environ Microbiol. 2007; 73: 1010-1013
        • Lofgren J.L.
        • Whary M.T.
        • Ge Z.
        • et al.
        Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia.
        Gastroenterology. 2011; 140: 210-220
        • Lertpiriyapong K.
        • Whary M.T.
        • Muthupalani S.
        • et al.
        Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis.
        Gut. 2014; 63: 54-63
        • Lemke L.B.
        • Ge Z.
        • Whary M.T.
        • et al.
        Concurrent Helicobacter bilis infection in C57BL/6 mice attenuates proinflammatory H. pylori-induced gastric pathology.
        Infect Immun. 2009; 77: 2147-2158
        • Ge Z.
        • Feng Y.
        • Muthupalani S.
        • et al.
        Coinfection with Enterohepatic Helicobacter species can ameliorate or promote Helicobacter pylori-induced gastric pathology in C57BL/6 mice.
        Infect Immun. 2011; 79: 3861-3871
        • Martin M.E.
        • Bhatnagar S.
        • George M.D.
        • et al.
        The impact of Helicobacter pylori infection on the gastric microbiota of the rhesus macaque.
        PLoS One. 2013; 8: e76375
        • Lagergren J.
        • Lagergren P.
        Recent developments in esophageal adenocarcinoma.
        CA Cancer J Clin. 2013; 63: 232-248
        • Yang L.
        • Lu X.
        • Nossa C.W.
        • et al.
        Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome.
        Gastroenterology. 2009; 137: 588-597
        • Yang L.
        • Francois F.
        • Pei Z.
        Molecular pathways: pathogenesis and clinical implications of microbiome alteration in esophagitis and Barrett esophagus.
        Clin Cancer Res. 2012; 18: 2138-2144
        • Fan Y.P.
        • Chakder S.
        • Gao F.
        • et al.
        Inducible and neuronal nitric oxide synthase involvement in lipopolysaccharide-induced sphincteric dysfunction.
        Am J Physiol Gastrointest Liver Physiol. 2001; 280: G32-G42
        • Calatayud S.
        • Garcia-Zaragoza E.
        • Hernandez C.
        • et al.
        Downregulation of nNOS and synthesis of PGs associated with endotoxin-induced delay in gastric emptying.
        Am J Physiol Gastrointest Liver Physiol. 2002; 283: G1360-G1367
        • Smith B.D.
        • Smith G.L.
        • Hurria A.
        • et al.
        Future of cancer incidence in the United States: burdens upon an aging, changing nation.
        J Clin Oncol. 2009; 27: 2758-2765
        • Fearon E.R.
        Molecular genetics of colorectal cancer.
        Annu Rev Pathol. 2011; 6: 479-507
        • Vogelstein B.
        • Kinzler K.W.
        The multistep nature of cancer.
        Trends Genet. 1993; 9: 138-141
        • Dejea C.
        • Wick E.
        • Sears C.L.
        Bacterial oncogenesis in the colon.
        Future Microbiol. 2013; 8: 445-460
        • Slattery M.L.
        • Curtin K.
        • Sweeney C.
        • et al.
        Diet and lifestyle factor associations with CpG island methylator phenotype and BRAF mutations in colon cancer.
        Int J Cancer. 2007; 120: 656-663
        • Qin J.
        • Li R.
        • Raes J.
        • et al.
        A human gut microbial gene catalogue established by metagenomic sequencing.
        Nature. 2010; 464: 59-65
        • Walter J.
        • Ley R.
        The human gut microbiome: ecology and recent evolutionary changes.
        Annu Rev Microbiol. 2011; 65: 411-429
        • Lozupone C.A.
        • Stombaugh J.I.
        • Gordon J.I.
        • et al.
        Diversity, stability and resilience of the human gut microbiota.
        Nature. 2012; 489: 220-230
        • Palmer C.
        • Bik E.M.
        • DiGiulio D.B.
        • et al.
        Development of the human infant intestinal microbiota.
        PLoS Biol. 2007; 5: e177
        • Chen W.
        • Liu F.
        • Ling Z.
        • et al.
        Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer.
        PLoS One. 2012; 7: e39743
        • Jemal A.
        • Siegel R.
        • Ward E.
        • et al.
        Cancer statistics, 2009.
        CA Cancer J Clin. 2009; 59: 225-249
        • Gupta R.B.
        • Harpaz N.
        • Itzkowitz S.
        • et al.
        Histologic inflammation is a risk factor for progression to colorectal neoplasia in ulcerative colitis: a cohort study.
        Gastroenterology. 2007; 133: 1099-1105
        • Arthur J.C.
        • Perez-Chanona E.
        • Muhlbauer M.
        • et al.
        Intestinal inflammation targets cancer-inducing activity of the microbiota.
        Science. 2012; 338: 120-123
        • Boleij A.
        • van Gelder M.M.
        • Swinkels D.W.
        • et al.
        Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis.
        Clin Infect Dis. 2011; 53: 870-878
        • Shen X.J.
        • Rawls J.F.
        • Randall T.
        • et al.
        Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas.
        Gut Microbes. 2010; 1: 138-147
        • Sobhani I.
        • Tap J.
        • Roudot-Thoraval F.
        • et al.
        Microbial dysbiosis in colorectal cancer (CRC) patients.
        PLoS One. 2011; 6: e16393
        • Wu N.
        • Yang X.
        • Zhang R.
        • et al.
        Dysbiosis signature of fecal microbiota in colorectal cancer patients.
        Microb Ecol. 2013; 66: 462-470
        • Weir T.L.
        • Manter D.K.
        • Sheflin A.M.
        • et al.
        Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults.
        PLoS One. 2013; 8: e70803
        • Castellarin M.
        • Warren R.L.
        • Freeman J.D.
        • et al.
        Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma.
        Genome Res. 2012; 22: 299-306
        • Kostic A.D.
        • Gevers D.
        • Pedamallu C.S.
        • et al.
        Genomic analysis identifies association of Fusobacterium with colorectal carcinoma.
        Genome Res. 2012; 22: 292-298
        • Kostic A.D.
        • Chun E.
        • Robertson L.
        • et al.
        Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment.
        Cell Host Microbe. 2013; 14: 207-215
        • Wu S.
        • Rhee K.J.
        • Albesiano E.
        • et al.
        A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses.
        Nat Med. 2009; 15: 1016-1022
        • Chen H.M.
        • Yu Y.N.
        • Wang J.L.
        • et al.
        Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma.
        Am J Clin Nutr. 2013; 97: 1044-1052
        • Marchesi J.R.
        • Dutilh B.E.
        • Hall N.
        • et al.
        Towards the human colorectal cancer microbiome.
        PLoS One. 2011; 6: e20447
        • Hirayama A.
        • Kami K.
        • Sugimoto M.
        • et al.
        Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry.
        Cancer Res. 2009; 69: 4918-4925
        • Tjalsma H.
        • Boleij A.
        • Marchesi J.R.
        • et al.
        A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects.
        Nat Rev Microbiol. 2012; 10: 575-582
        • Sears C.L.
        • Pardoll D.M.
        Perspective: alpha-bugs, their microbial partners, and the link to colon cancer.
        J Infect Dis. 2011; 203: 306-311
        • Casini B.
        • Borgese L.
        • Del Nonno F.
        • et al.
        Presence and incidence of DNA sequences of human polyomaviruses BKV and JCV in colorectal tumor tissues.
        Anticancer Res. 2005; 25: 1079-1085
        • Laghi L.
        • Randolph A.E.
        • Chauhan D.P.
        • et al.
        JC virus DNA is present in the mucosa of the human colon and in colorectal cancers.
        Proc Natl Acad Sci U S A. 1999; 96: 7484-7489
        • Enam S.
        • Del Valle L.
        • Lara C.
        • et al.
        Association of human polyomavirus JCV with colon cancer: evidence for interaction of viral T-antigen and beta-catenin.
        Cancer Res. 2002; 62: 7093-7101
        • Chen H.P.
        • Jiang J.K.
        • Chen C.Y.
        • et al.
        Human cytomegalovirus preferentially infects the neoplastic epithelium of colorectal cancer: a quantitative and histological analysis.
        J Clin Virol. 2012; 54: 240-244
        • Hwang E.S.
        • Zhang Z.
        • Cai H.
        • et al.
        Human cytomegalovirus IE1-72 protein interacts with p53 and inhibits p53-dependent transactivation by a mechanism different from that of IE2-86 protein.
        J Virol. 2009; 83: 12388-12398
        • Chen T.H.
        • Huang C.C.
        • Yeh K.T.
        • et al.
        Human papilloma virus 16 E6 oncoprotein associated with p53 inactivation in colorectal cancer.
        World J Gastroenterol. 2012; 18: 4051-4058
        • Greer J.B.
        • O'Keefe S.J.
        Microbial induction of immunity, inflammation, and cancer.
        Front Physiol. 2011; 1: 168
        • Vargas A.J.
        • Thompson P.A.
        Diet and nutrient factors in colorectal cancer risk.
        Nutr Clin Pract. 2012; 27: 613-623
        • O'Keefe S.J.
        Nutrition and colonic health: the critical role of the microbiota.
        Curr Opin Gastroenterol. 2008; 24: 51-58
        • Augenlicht L.H.
        • Mariadason J.M.
        • Wilson A.
        • et al.
        Short chain fatty acids and colon cancer.
        J Nutr. 2002; 132: 3804S-3808S
        • Scheppach W.
        Effects of short chain fatty acids on gut morphology and function.
        Gut. 1994; 35: S35-S38
        • Louis P.
        • Scott K.P.
        • Duncan S.H.
        • et al.
        Understanding the effects of diet on bacterial metabolism in the large intestine.
        J Appl Microbiol. 2007; 102: 1197-1208
        • Windey K.
        • De Preter V.
        • Verbeke K.
        Relevance of protein fermentation to gut health.
        Mol Nutr Food Res. 2012; 56: 184-196
        • Wells J.E.
        • Hylemon P.B.
        Identification and characterization of a bile acid 7alpha-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7alpha-dehydroxylating strain isolated from human feces.
        Appl Environ Microbiol. 2000; 66: 1107-1113
        • Ou J.
        • Carbonero F.
        • Zoetendal E.G.
        • et al.
        Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans.
        Am J Clin Nutr. 2013; 98: 111-120
        • Fukata M.
        • Abreu M.T.
        TLR4 signalling in the intestine in health and disease.
        Biochem Soc Trans. 2007; 35: 1473-1478
        • Rakoff-Nahoum S.
        • Medzhitov R.
        Innate immune recognition of the indigenous microbial flora.
        Mucosal Immunol. 2008; 1: S10-S14
        • Asquith M.
        • Powrie F.
        An innately dangerous balancing act: intestinal homeostasis, inflammation, and colitis-associated cancer.
        J Exp Med. 2010; 207: 1573-1577
        • Fukata M.
        • Abreu M.T.
        Microflora in colorectal cancer: a friend to fear.
        Nat Med. 2010; 16: 639-641
        • Moossavi S.
        • Rezaei N.
        Toll-like receptor signalling and their therapeutic targeting in colorectal cancer.
        Int Immunopharmacol. 2013; 16: 199-209
        • Santaolalla R.
        • Sussman D.A.
        • Ruiz J.R.
        • et al.
        TLR4 activates the beta-catenin pathway to cause intestinal neoplasia.
        PLoS One. 2013; 8: e63298
        • Lascorz J.
        • Hemminki K.
        • Forsti A.
        Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development.
        J Carcinog. 2011; 10: 7
        • Saleh M.
        • Trinchieri G.
        Innate immune mechanisms of colitis and colitis-associated colorectal cancer.
        Nat Rev Immunol. 2011; 11: 9-20
        • Fukata M.
        • Chen A.
        • Vamadevan A.S.
        • et al.
        Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors.
        Gastroenterology. 2007; 133: 1869-1881
        • Fukata M.
        • Shang L.
        • Santaolalla R.
        • et al.
        Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis.
        Inflamm Bowel Dis. 2011; 17: 1464-1473
        • Lowe E.L.
        • Crother T.R.
        • Rabizadeh S.
        • et al.
        Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer.
        PLoS One. 2010; 5: e13027
        • Salcedo R.
        • Worschech A.
        • Cardone M.
        • et al.
        MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18.
        J Exp Med. 2010; 207: 1625-1636
        • Rakoff-Nahoum S.
        • Medzhitov R.
        Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88.
        Science. 2007; 317: 124-127
        • Lee S.H.
        • Hu L.L.
        • Gonzalez-Navajas J.
        • et al.
        ERK activation drives intestinal tumorigenesis in Apc(min/+) mice.
        Nat Med. 2010; 16: 665-670
        • Grivennikov S.I.
        • Wang K.
        • Mucida D.
        • et al.
        Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth.
        Nature. 2012; 491: 254-258
        • Moser A.R.
        • Pitot H.C.
        • Dove W.F.
        A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse.
        Science. 1990; 247: 322-324
        • Li Y.
        • Kundu P.
        • Seow S.W.
        • et al.
        Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice.
        Carcinogenesis. 2012; 33: 1231-1238
        • Sussman D.A.
        • Santaolalla R.
        • Strobel S.
        • et al.
        Cancer in inflammatory bowel disease: lessons from animal models.
        Curr Opin Gastroenterol. 2012; 28: 327-333
        • Erdman S.E.
        • Poutahidis T.
        • Tomczak M.
        • et al.
        CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice.
        Am J Pathol. 2003; 162: 691-702
        • Nagamine C.M.
        • Rogers A.B.
        • Fox J.G.
        • et al.
        Helicobacter hepaticus promotes azoxymethane-initiated colon tumorigenesis in BALB/c-IL10-deficient mice.
        Int J Cancer. 2008; 122: 832-838
        • Uronis J.M.
        • Muhlbauer M.
        • Herfarth H.H.
        • et al.
        Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility.
        PLoS One. 2009; 4: e6026
        • Couturier-Maillard A.
        • Secher T.
        • Rehman A.
        • et al.
        NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer.
        J Clin Invest. 2013; 123: 700-711
        • Klimesova K.
        • Kverka M.
        • Zakostelska Z.
        • et al.
        Altered gut microbiota promotes colitis-associated cancer in IL-1 receptor-associated kinase M-deficient mice.
        Inflamm Bowel Dis. 2013; 19: 1266-1277
        • Rubinstein M.R.
        • Wang X.
        • Liu W.
        • et al.
        Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin.
        Cell Host Microbe. 2013; 14: 195-206
        • Cuevas-Ramos G.
        • Petit C.R.
        • Marcq I.
        • et al.
        Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells.
        Proc Natl Acad Sci U S A. 2010; 107: 11537-11542
        • Huycke M.M.
        • Abrams V.
        • Moore D.R.
        Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA.
        Carcinogenesis. 2002; 23: 529-536
        • Huycke M.M.
        • Moore D.R.
        In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation.
        Free Radic Biol Med. 2002; 33: 818-826
        • Wang X.
        • Huycke M.M.
        Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells.
        Gastroenterology. 2007; 132: 551-561
        • Carroll I.M.
        • Andrus J.M.
        • Bruno-Barcena J.M.
        • et al.
        Anti-inflammatory properties of Lactobacillus gasseri expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis.
        Am J Physiol Gastrointest Liver Physiol. 2007; 293: G729-G738
        • Zhu Y.
        • Michelle Luo T.
        • Jobin C.
        • et al.
        Gut microbiota and probiotics in colon tumorigenesis.
        Cancer Lett. 2011; 309: 119-127
        • Gianotti L.
        • Morelli L.
        • Galbiati F.
        • et al.
        A randomized double-blind trial on perioperative administration of probiotics in colorectal cancer patients.
        World J Gastroenterol. 2010; 16: 167-175
        • Ishikawa H.
        • Akedo I.
        • Otani T.
        • et al.
        Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors.
        Int J Cancer. 2005; 116: 762-767
        • Swidsinski A.
        • Khilkin M.
        • Kerjaschki D.
        • et al.
        Association between intraepithelial Escherichia coli and colorectal cancer.
        Gastroenterology. 1998; 115: 281-286