Advertisement

Detection of Dysplasia in Barrett's Esophagus With In Vivo Depth-Resolved Nuclear Morphology Measurements

Published:September 20, 2010DOI:https://doi.org/10.1053/j.gastro.2010.09.008

      Background & Aims

      Patients with Barrett's esophagus (BE) show increased risk of developing esophageal adenocarcinoma and are routinely examined using upper endoscopy with biopsy to detect neoplastic changes. Angle-resolved low coherence interferometry (a/LCI) uses in vivo depth-resolved nuclear morphology measurements to detect dysplasia. We assessed the clinical utility of a/LCI in the endoscopic surveillance of patients with BE.

      Methods

      Consecutive patients undergoing routine surveillance upper endoscopy for BE were recruited at 2 endoscopy centers. A novel, endoscope-compatible a/LCI system measured the mean diameter and refractive index of cell nuclei in esophageal epithelium at 172 biopsy sites in 46 patients. At each site, an a/LCI measurement was correlated with a concurrent endoscopic biopsy specimen. Each biopsy specimen was assessed histologically and classified as normal, nondysplastic BE, indeterminate for dysplasia, low-grade dysplasia (LGD), or high-grade dysplasia (HGD). The a/LCI data from multiple depths were analyzed to evaluate its ability to differentiate dysplastic from nondysplastic tissue.

      Results

      Pathology characterized 5 of the scanned sites as HGD, 8 as LGD, 75 as nondysplastic BE, 70 as normal tissue types, and 14 as indeterminate for dysplasia. The a/LCI nuclear size measurements separated dysplastic from nondysplastic tissue at a statistically significant (P < .001) level for the tissue segment 200 to 300 μm beneath the surface with an accuracy of 86% (147/172). A receiver operator characteristic analysis indicated an area under the curve of 0.91, and an optimized decision point gave 100% (13/13) sensitivity and 84% (134/159) specificity.

      Conclusions

      These preliminary data suggest a/LCI is accurate in detecting dysplasia in vivo in patients with BE.

      Keywords

      Abbreviations used in this paper:

      a/LCI (angle-resolved low coherence interferometry), AUC (area under the curve), BE (Barrett's esophagus), CI (confidence interval), HGD (high-grade dysplasia), LGD (low-grade dysplasia), ROC (receiver operating characteristic)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jemal A.
        • Siegel R.
        • Ward E.
        • et al.
        Cancer statistics, 2009.
        CA Cancer J Clin. 2009; 59: 225
        • Spechler S.J.
        • Goyal R.K.
        The columnar-lined esophagus, intestinal metaplasia, and Norman Barrett.
        Gastroenterology. 1996; 110: 614-621
      1. Spechler S. Barrett's esophagus. GI Motility online 2006; doi:10.1038/gimo44.

        • Shaheen N.J.
        • Richter J.E.
        Barrett's oesophagus.
        Lancet. 2009; 373: 850-861
        • Yousef F.
        • Cardwell C.
        • Cantwell M.
        • et al.
        The incidence of esophageal cancer and high-grade dysplasia in Barrett's esophagus: a systematic review and meta-analysis.
        Am J Epidemiol. 2008; 168: 237-249
        • Shaheen N.J.
        • Sharma P.
        • Overholt B.F.
        • et al.
        Radiofrequency ablation in Barrett's esophagus with dysplasia.
        N Engl J Med. 2009; 360: 2277-2288
        • Overholt B.F.
        • Lightdale C.J.
        • Wang K.K.
        • et al.
        Photodynamic therapy with porfimer sodium for ablation of high-grade dysplasia in Barrett's esophagus: international, partially blinded, randomized phase III trial.
        Gastrointest Endosc. 2005; 62: 488-498
        • Barritt A.St.
        • Shaheen N.J.
        Should patients with Barrett's oesophagus be kept under surveillance?.
        Best Pract Res Clin Gastroenterol. 2008; 22: 741-750
        • Downs-Kelly E.
        • Mendelin J.E.
        • Bennett A.E.
        • et al.
        Poor interobserver agreement in the distinction of high-grade dysplasia and adenocarcinoma in pretreatment Barrett's esophagus biopsies.
        Am J Gastroenterol. 2008; 103: 2333-2340
        • Wallace M.B.
        • Perelman L.T.
        • Backman V.
        • et al.
        Endoscopic detection of dysplasia in patients with Barrett's esophagus using light-scattering spectroscopy.
        Gastroenterology. 2000; 119: 677-682
        • Sharma P.
        Clinical practice.
        N Engl J Med. 2009; 361: 2548-2556
        • Overholt B.F.
        • Panjehpour M.
        • Halberg D.L.
        Photodynamic therapy for Barrett's esophagus with dysplasia and/or early stage carcinoma: long-term results.
        Gastrointest Endosc. 2003; 58: 183-188
        • Johnston M.H.
        • Eastone J.A.
        • Horwhat J.D.
        • et al.
        Cryoablation of Barrett's esophagus: a pilot study.
        Gastrointest Endosc. 2005; 62: 842-848
        • Backman V.
        • Gopal V.
        • Kalashnikov M.
        • et al.
        Measuring cellular structure at submicrometer scale with light scattering spectroscopy.
        IEEE J Sel Top Quantum Electron. 2001; 7: 887-893
        • Georgakoudi I.
        • Jacobson B.C.
        • Van Dam J.
        • et al.
        Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus.
        Gastroenterology. 2001; 120: 1620-1629
        • Roy H.K.
        • Liu Y.
        • Wali R.K.
        • et al.
        Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis.
        Gastroenterology. 2004; 126 (; discussion 948): 1071-1081
        • Polglase A.L.
        • McLaren W.J.
        • Skinner S.A.
        • et al.
        A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract.
        Gastrointest Endosc. 2005; 62: 686-695
        • Kara M.A.
        • Peters F.P.
        • Ten Kate F.J.
        • et al.
        Endoscopic video autofluorescence imaging may improve the detection of early neoplasia in patients with Barrett's esophagus.
        Gastrointest Endosc. 2005; 61: 679-685
        • Fahmy M.
        • Skacel M.
        • Gramlich T.L.
        • et al.
        Chromosomal gains and genomic loss of p53 and p16 genes in Barrett's esophagus detected by fluorescence in situ hybridization of cytology specimens.
        Mod Pathol. 2004; 17: 588-596
        • Brankley S.M.
        • Wang K.K.
        • Harwood A.R.
        • et al.
        The development of a fluorescence in situ hybridization assay for the detection of dysplasia and adenocarcinoma in Barrett's esophagus.
        J Mol Diagn. 2006; 8: 260-267
        • Panjehpour M.
        • Overholt B.F.
        • Vo-Dinh T.
        • et al.
        Endoscopic fluorescence detection of high-grade dysplasia in Barrett's esophagus.
        Gastroenterology. 1996; 111: 93-101
      2. Zhu Y, Terry NG, Woosley JT, et al. Design and validation of an angle-resolved low coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology. J Biomed Opt (in press).

        • Brown W.J.
        • Pyhtila J.W.
        • Terry N.G.
        • et al.
        Review and recent development of angle-resolved low-coherence interferometry for detection of precancerous cells in human esophageal epithelium.
        IEEE J Sel Top Quantum Electron. 2008; 14: 88-97
        • Wax A.
        • Yang C.H.
        • Backman V.
        • et al.
        Cellular organization and substructure measured using angle-resolved low-coherence interferometry.
        Biophys J. 2002; 82: 2256-2264
        • Bohren C.F.
        • Huffman D.R.
        Absorption and scattering of light by small particles.
        Wiley, New York, NY1983
        • van de Hulst H.C.
        Light scattering by small particles.
        Dover Publications, New York, NY1981
        • Keener J.D.
        • Chalut K.J.
        • Pyhtila J.W.
        • et al.
        Application of Mie theory to determine the structure of spheroidal scatterers in biological materials.
        Opt Lett. 2007; 32: 1326-1328
        • Chalut K.J.
        • Giacomelli M.G.
        • Wax A.
        Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries.
        J Opt Soc Am A Opt Image Sci Vis. 2008; 25: 1866-1874
        • Chalut K.J.
        • Chen S.
        • Finan J.D.
        • et al.
        Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry.
        Biophys J. 2008; 94: 4948-4956
        • Amoozegar C.
        • Giacomelli M.G.
        • Keener J.D.
        • et al.
        Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei.
        Appl Opt. 2009; 48: D20-D25
        • Wax A.
        • Yang C.H.
        • Muller M.G.
        • et al.
        In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry.
        Cancer Res. 2003; 63: 3556-3559
        • Chalut K.J.
        • Kresty L.A.
        • Pyhtila J.W.
        • et al.
        In situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.
        Cancer Epidemiol Biomarkers Prev. 2007; 16: 223-227
        • Wax A.
        • Pyhtila J.W.
        • Graf R.N.
        • et al.
        Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry.
        J Biomed Opt. 2005; 10: 051604
        • Choma M.A.
        • Sarunic M.V.
        • Yang C.H.
        • et al.
        Sensitivity advantage of swept source and Fourier domain optical coherence tomography.
        Opt Express. 2003; 11: 2183-2189
        • Pyhtila J.W.
        • Boyer J.D.
        • Chalut K.J.
        • et al.
        Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy.
        Opt Lett. 2006; 31: 772-774
        • Landis J.R.
        • Koch G.G.
        The measurement of observer agreement for categorical data.
        Biometrics. 1977; 33: 159-174
        • Conio M.
        • Blanchi S.
        • Lapertosa G.
        • et al.
        Long-term endoscopic surveillance of patients with Barrett's esophagus.
        Am J Gastroenterol. 2003; 98: 1931-1939
        • Pyhtila J.W.
        • Chalut K.J.
        • Boyer J.D.
        • et al.
        In situ detection of nuclear atypia in Barrett's esophagus by using angle-resolved low-coherence interferometry.
        Gastrointest Endosc. 2007; 65: 487-491
        • Dunbar K.B.
        • Okolo III, P.
        • Montgomery E.
        • et al.
        Confocal laser endomicroscopy in Barrett's esophagus and endoscopically inapparent Barrett's neoplasia: a prospective, randomized, double-blind, controlled, crossover trial.
        Gastrointest Endosc. 2009; 70: 645-654
        • Curvers W.L.
        • Singh R.
        • Song L.M.
        • et al.
        Endoscopic tri-modal imaging for detection of early neoplasia in Barrett's oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system.
        Gut. 2008; 57: 167-172
        • Isenberg G.
        • Sivak Jr, M.V.
        • Chak A.
        • et al.
        Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett's esophagus: a prospective, double-blinded study.
        Gastrointest Endosc. 2005; 62: 825-831