Advertisement

Combined Functional and Positional Gene Information for the Identification of Susceptibility Variants in Celiac Disease

Published:November 29, 2007DOI:https://doi.org/10.1053/j.gastro.2007.11.041
      Background & Aims: Celiac disease is a complex, immune-mediated disorder of the intestinal mucosa with a strong genetic component. HLA-DQ2 is the major determinant of risk, but other minor genes, still to be identified, also are involved. Methods: We designed a strategy that combines gene expression profiling of intestinal biopsy specimens, linkage region information, and different bioinformatics tools for the selection of potentially regulatory single-nucleotide polymorphisms (SNPs) involved in the disease. We selected 361 SNPs from 71 genes that fulfilled stringent functional (changes in expression level) and positional criteria (located in regions that have been linked to the disease, other than HLA). These polymorphisms were genotyped in 262 celiac patients and 214 controls. Results: We detected strong evidence of association with several SNPs (the most significant were rs6747096, P = 2.38 × 10−5; rs7040561, P = 6.55 × 10−5; and rs458046, P = 1.35 × 10−4) that pinpoint novel candidate determinants of predisposition to the disease in previously identified linkage regions (eg, SERPINE2 in 2q33, and PBX3 or PPP6C in 9q34). Conclusions: Our study shows that the combination of function and position is a valid strategy for the genetic dissection of complex traits.

      Abbreviations used in this paper:

      CD (celiac disease), IL (interleukin), MHC (major histocompatibility complex), SNP (single-nucleotide polymorphism)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Castano L.
        • Blarduni E.
        • Ortiz L.
        • et al.
        Prospective population screening for celiac disease: high prevalence in the first 3 years of life.
        J Pediatr Gastroenterol Nutr. 2004; 39: 80-84
        • Van Heel D.A.
        • Hunt K.
        • Greco L.
        • et al.
        Genetics in coeliac disease.
        Best Pract Res Clin Gastroenterol. 2005; 19: 323-339
        • Molberg O.
        • Mcadam S.N.
        • Korner R.
        • et al.
        Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease.
        Nat Med. 1998; 4: 713-717
        • Lie B.A.
        • Sollid L.M.
        • Ascher H.
        • et al.
        A gene telomeric of the HLA class I region is involved in predisposition to both type 1 diabetes and coeliac disease.
        Tissue Antigens. 1999; 54: 162-168
        • Bilbao J.R.
        • Calvo B.
        • Aransay A.M.
        • et al.
        Conserved extended haplotypes discriminate HLA-DR3-homozygous Basque patients with type 1 diabetes mellitus and celiac disease.
        Genes Immun. 2006; 7: 550-554
        • Djilali-Saiah I.
        • Schmitz J.
        • Harfouch-Hammoud E.
        • et al.
        CTLA-4 gene polymorphism is associated with predisposition to coeliac disease.
        Gut. 1998; 43: 187-189
        • Martin-Pagola A.
        • Perez de Nanclares G.
        • Vitoria J.C.
        • et al.
        No association of CTLA4 gene with celiac disease in the Basque population.
        J Pediatr Gastroenterol Nutr. 2003; 37: 142-145
        • Rueda B.
        • Martinez A.
        • Lopez-Nevot M.A.
        • et al.
        A functional variant of IFNgamma gene is associated with coeliac disease.
        Genes Immun. 2004; 5: 517-519
        • Wapenaar M.C.
        • Van Belzen M.J.
        • Fransen J.H.
        • et al.
        The interferon gamma gene in celiac disease: augmented expression correlates with tissue damage but no evidence for genetic susceptibility.
        J Autoimmun. 2004; 23: 183-190
        • Van Heel D.A.
        • Franke L.
        • Hunt K.A.
        • et al.
        A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21.
        Nat Genet. 2007; 39: 827-829
        • Zhong F.
        • McCombs C.C.
        • Olson J.M.
        • et al.
        An autosomal screen for genes that predispose to celiac disease in the western counties of Ireland.
        Nat Genet. 1996; 14: 329-333
        • Greco L.
        • Corazza G.
        • Babron M.C.
        • et al.
        Genome search in celiac disease.
        Am J Hum Genet. 1998; 62: 669-675
        • King A.L.
        • Yiannakou J.Y.
        • Brett P.M.
        • et al.
        A genome-wide family-based linkage study of coeliac disease.
        Ann Hum Genet. 2000; 64: 479-490
        • Liu J.
        • Juo S.H.
        • Holopainen P.
        • et al.
        Genomewide linkage analysis of celiac disease in Finnish families.
        Am J Hum Genet. 2002; 70: 51-59
        • Popat S.
        • Bevan S.
        • Braegger C.P.
        • et al.
        Genome screening of coeliac disease.
        J Med Genet. 2002; 39: 328-331
        • Garner C.P.
        • Ding Y.C.
        • Steele L.
        • et al.
        Genome-wide linkage analysis of 160 North American families with celiac disease.
        Genes Immun. 2007; 8: 108-114
        • Ryan A.W.
        • Thornton J.M.
        • Brophy K.
        • et al.
        Haplotype variation at the IBD5/SLC22A4 locus (5q31) in coeliac disease in the Irish population.
        Tissue Antigens. 2004; 64: 195-198
        • Ryan A.W.
        • Thornton J.M.
        • Brophy K.
        • et al.
        Chromosome 5q candidate genes in coeliac disease: genetic variation at IL4, IL5, IL9, IL13, IL17B and NR3C1.
        Tissue Antigens. 2005; 65: 150-155
        • Monsuur A.J.
        • de Bakker P.I.
        • Alizadeh B.Z.
        • et al.
        Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect.
        Nat Genet. 2005; 37: 1341-1344
        • Van Bodegraven A.A.
        • Curley C.R.
        • Hunt K.A.
        • et al.
        Genetic variation in myosin IXB is associated with ulcerative colitis.
        Gastroenterology. 2006; 131: 1768-1774
        • Hunt K.A.
        • Monsuur A.J.
        • McArdle W.L.
        • et al.
        Lack of association of MYO9B genetic variants with coeliac disease in a British cohort.
        Gut. 2006; 55: 969-972
        • Amundsen S.S.
        • Monsuur A.J.
        • Wapenaar M.C.
        • et al.
        Association analysis of MYO9B gene polymorphisms with celiac disease in a Swedish/Norwegian cohort.
        Hum Immunol. 2006; 67: 341-345
        • Giordano M.
        • Marano C.
        • Mellai M.
        • et al.
        A family-based study does not confirm the association of MYO9B with celiac disease in the Italian population.
        Genes Immun. 2006; 7: 606-608
        • Cirillo G.
        • Di Domenico M.R.
        • Corsi I.
        • et al.
        Do MYO9B genetic variants predispose to coeliac disease?.
        Dig Liver Dis. 2007; 39: 228-231
        • Santin I.
        • Castellanos-Rubio A.
        • Perez de Nanclares G.
        • et al.
        Association of KIR2DL5B gene with celiac disease supports the susceptibility locus on 19q13.4.
        Genes Immun. 2002; 8: 171-176
        • Juuti-Uusitalo K.
        • Maki M.
        • Kaukinen K.
        • et al.
        cDNA microarray analysis of gene expression in coeliac disease jejunal biopsy samples.
        J Autoimmun. 2002; 22: 249-265
        • Diosdado B.
        • Wapenaar M.C.
        • Franke L.
        • et al.
        A microarray screen for novel candidate genes in coeliac disease pathogenesis.
        Gut. 2004; 53: 944-951
        • Prokunina L.
        • Alarcon-Riquelme M.E.
        Regulatory SNPs in complex diseases: their identification and functional validation.
        Expert Rev Mol Med. 2004; 6: 1-15
        • Martin-Pagola A.
        • Perez-Nanclares G.
        • Ortiz L.
        • et al.
        MICA response to gliadin in intestinal mucosa from celiac patients.
        Immunogenetics. 2004; 56: 549-554
        • Argraves G.L.
        • Jani S.
        • Barth J.L.
        • et al.
        ArrayQuest: a web resource for the analysis of DNA microarray data.
        BMC Bioinformatics. 2005; 6: 287
        • Yuan H.Y.
        • Chiou J.J.
        • Tseng W.H.
        • et al.
        FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization.
        Nucleic Acids Res. 2006; 34: 635-641
        • Conde L.
        • Vaquerizas J.M.
        • Dopazo H.
        • et al.
        PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes.
        Nucleic Acids Res. 2006; 34: 621-625
        • Xu H.
        • Gregory S.G.
        • Hauser E.R.
        • et al.
        SNPselector: a web tool for selecting SNPs for genetic association studies.
        Bioinformatics. 2005; 21: 4181-4186
        • Hemminger B.M.
        • Saelim B.
        • Sullivan P.F.
        TAMAL: an integrated approach to choosing SNPs for genetic studies of human complex traits.
        Bioinformatics. 2006; 22: 626-627
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • et al.
        PLINK: a toolset for whole-genome association and population-based linkage analysis.
        Am J Hum Genet. 2007; 81: 559-575
        • Buchholz M.
        • Biebl A.
        • Neesse A.
        • et al.
        SERPINE2 (protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo.
        Cancer Res. 2003; 63: 4945-4951
        • Villanacci V.
        • Facchetti F.
        • Pillan N.
        • et al.
        Expression of cell adhesion molecules in jejunum biopsies of children with coeliac disease.
        It J Gastroenterol. 1993; 25: 109-116
        • Kristiansen O.P.
        • Larsen Z.M.
        • Pociot F.
        CTLA-4 in autoimmune diseases—a general susceptibility gene to autoimmunity?.
        Genes Immun. 2000; 1: 170-184
        • Holopainen P.
        • Naluai A.T.
        • Moodie S.
        • et al.
        Candidate gene region 2q33 in European families with coeliac disease.
        Tissue Antigens. 2004; 63: 212-222
        • Hunt K.
        • McGovern D.
        • Kumar P.
        • et al.
        A common CTLA4 haplotype associated with coeliac disease.
        Eur J Hum Genet. 2005; 13: 440-444
        • Penkov D.
        • Di Rosa P.
        • Fernandez-Diaz L.
        • et al.
        Involvement of Prep1 in the alphabeta T-cell receptor T-lymphocytic potential of hematopoietic precursors.
        Mol Cell Biol. 2005; 25: 10768-10781
        • Bastians H.
        • Ponstingl H.
        The novel human protein serine/threonine phosphatase 6 is a functional homologue of budding yeast Sit4p and fission yeast ppe1, which are involved in cell cycle regulation.
        J Cell Sci. 1996; 109: 2865-2874
        • Kanehisa M.
        • Goto S.
        • Hattori M.
        • et al.
        From genomics to chemical genomics: new developments in KEGG.
        Nucleic Acids Res. 2006; 34: D354-D357
        • Przemioslo R.
        • Wright N.A.
        • Elia G.
        • et al.
        Analysis of crypt cell proliferation in coeliac disease using MI-B1 antibody shows an increase in growth fraction.
        Gut. 1995; 36: 22-27
        • Stolle K.
        • Schnoor M.
        • Fuellen G.
        • et al.
        Cloning, cellular localization, genomic organization, and tissue-specific expression of the TGFbeta1-inducible SMAP-5 gene.
        Gene. 2005; 23: 119-130
        • Prud’homme G.J.
        • Piccirillo C.A.
        The inhibitory effects of transforming growth factor-beta-1 (TGF-beta1) in autoimmune diseases.
        J Autoimmun. 2000; 14: 23-42
        • Michl P.
        • Ramjaun A.R.
        • Pardo O.E.
        • et al.
        CUTL1 is a target of TGF(beta) signaling that enhances cancer cell motility and invasiveness.
        J Cancer Cell. 2005; 7: 521-532
        • Kim S.Y.
        New target against inflammatory diseases: transglutaminase 2.
        Arch Immunol Ther Exp (Warsz). 2004; 52: 332-337

      Linked Article

      • Hunting for Celiac Disease Genes
        GastroenterologyVol. 134Issue 3
        • Preview
          Celiac disease results from a dysregulated immune response to dietary wheat gluten and related cereal proteins.1,2 The disease is an acquired disorder, but with a strong hereditary component. The evidence for the importance of genes comes from familial and twin studies. About 10% of first-degree relatives are affected by the disease, compared with the population prevalence of about 1%; the pairwise concordance rates in monozygotic and dizygotic twins are about 75% and 10%, respectively.3 Already in 1972 the association between celiac disease and the HLA locus had been established.
        • Full-Text
        • PDF