Advertisement

Gut Hormones and Appetite Control

  • A.M. Wren
    Affiliations
    Department of Metabolic Medicine, Imperial College London, London, England
    Search for articles by this author
  • S.R. Bloom
    Correspondence
    Address requests for reprints to: Stephen R. Bloom, MD, Department of Metabolic Medicine, Imperial College London, Hammersmith Campus, 6th Floor, Commonwealth Building, Du Cane Road, London, W12 0NN, England. fax: (44) 20 8383 3142.
    Affiliations
    Department of Metabolic Medicine, Imperial College London, London, England
    Search for articles by this author
      Many peptides are synthesized and released from the gastrointestinal tract. Although their roles in the regulation of gastrointestinal function have been known for some time, it is now evident that they also physiologically influence eating behavior. Our understanding of how neurohormonal gut–brain signaling regulates energy homeostasis has advanced significantly in recent years. Ghrelin is an orexigenic peptide produced by the stomach, which appears to act as a meal initiator. Satiety signals derived from the intestine and pancreas include peptide YY, pancreatic polypeptide, glucagon-like peptide 1, oxyntomodulin, and cholecystokinin. Recent research suggests that gut hormones can be manipulated to regulate energy balance in humans, and that obese subjects retain sensitivity to the actions of gut hormones. Gut hormone-based therapies may thus provide an effective and well-tolerated treatment for obesity.

      Abbreviations used in the paper:

      AgRP (agouti-related peptide), CCK (cholecystokinin), CNS (central nervous system), GH (growth hormone), GLP-1 (glucagon-like peptide 1), NPY (neuropeptide Y), NTS (nucleus of the solitary tract), POMC (pro-opiomelanocortin), PP (pancreatic polypeptide), PWS (Prader-Willi syndrome), PYY (peptide YY)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Flegal K.M.
        Epidemiologic aspects of overweight and obesity in the United States.
        Physiol Behav. 2005; 86: 599-602
        • Bourn J.
        Tackling obesity in England.
        Report by the comptroller and auditor general. The Stationery Office, House of Commons, England2001
        • WHO
        Obesity: preventing and managing the global epidemic.
        Report of a WHO consultation on obesity. Author, Geneva, Switzerland2004
        • Yanovski S.Z.
        • Yanovski J.A.
        Obesity.
        N Engl J Med. 2002; 346: 591-602
        • Curran M.P.
        • Scott L.J.
        Spotlight on orlistat in the management of patients with obesity.
        Treat Endocrinol. 2005; 4: 127-129
        • Finer N.
        Pharmacotherapy of obesity.
        Best Pract Res Clin Endocrinol Metab. 2002; 16: 717-742
        • Van Gaal L.F.
        • Rissanen A.M.
        • Scheen A.J.
        • Ziegler O.
        • Rossner S.
        Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study.
        Lancet. 2005; 365: 1389-1397
        • Howlett A.C.
        The cannabinoid receptors.
        Prostaglandins Other Lipid Mediat. 2002; 68-69: 619-631
        • van O.B.
        • Killestein J.
        • Polman C.
        Effect of rimonabant on weight reduction and cardiovascular risk.
        Lancet. 2005; 366: 368-369
        • Hirschel B.
        Effect of rimonabant on weight reduction and cardiovascular risk.
        Lancet. 2005; 366: 369-370
      1. Kings Fund.
        Report of a working party charied by JE Lennard-Jones. 2003
        • Cone R.D.
        • Cowley M.A.
        • Butler A.A.
        • Fan W.
        • Marks D.L.
        • Low M.J.
        The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis.
        Int J Obes Relat Metab Disord. 2001; 25: S63-S67
        • Schwartz M.W.
        • Woods S.C.
        • Porte Jr, D.
        • Seeley R.J.
        • Baskin D.G.
        Central nervous system control of food intake.
        Nature. 2000; 404: 661-671
        • Kalra S.P.
        • Dube M.G.
        • Pu S.
        • Xu B.
        • Horvath T.L.
        • Kalra P.S.
        Interacting appetite-regulating pathways in the hypothalamic regulation of body weight.
        Endocr Rev. 1999; 20: 68-100
        • Flier J.S.
        Obesity wars: molecular progress confronts an expanding epidemic.
        Cell. 2004; 116: 337-350
        • Grill H.J.
        • Smith G.P.
        Cholecystokinin decreases sucrose intake in chronic decerebrate rats.
        Am J Physiol. 1988; 254: R853-R856
        • Zhang Y.
        • Proenca R.
        • Maffei M.
        • Barone M.
        • Leopold L.
        • Friedman J.M.
        Positional cloning of the mouse obese gene and its human homologue.
        Nature. 1994; 372: 425-432
        • Kojima M.
        • Hosoda H.
        • Date Y.
        • Nakazato M.
        • Matsuo H.
        • Kangawa K.
        Ghrelin is a growth-hormone-releasing acylated peptide from stomach.
        Nature. 1999; 402: 656-660
        • Tschop M.
        • Smiley D.L.
        • Heiman M.L.
        Ghrelin induces adiposity in rodents.
        Nature. 2000; 407: 908-913
        • Wren A.M.
        • Small C.J.
        • Ward H.L.
        • Murphy K.G.
        • Dakin C.L.
        • Taheri S.
        • Kennedy A.R.
        • Roberts G.H.
        • Morgan D.G.
        • Ghatei M.A.
        • Bloom S.R.
        The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion.
        Endocrinology. 2000; 141: 4325-4328
        • Nakazato M.
        • Murakami N.
        • Date Y.
        • Kojima M.
        • Matsuo H.
        • Kangawa K.
        • Matsukura S.
        A role for ghrelin in the central regulation of feeding.
        Nature. 2001; 409: 194-198
        • Wren A.M.
        • Small C.J.
        • Abbott C.R.
        • Dhillo W.S.
        • Seal I.
        • Cohen M.A.
        • Batterham R.L.
        • Taheri S.
        • Stanley S.A.
        • Ghatei M.A.
        • Bloom S.R.
        Ghrelin causes hyperphagia and obesity in rats.
        Diabetes. 2001; 50: 2540-2547
        • Date Y.
        • Kojima M.
        • Hosoda H.
        • Sawaguchi A.
        • Mondal M.S.
        • Suganuma T.
        • Matsukura S.
        • Kangawa K.
        • Nakazato M.
        Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans.
        Endocrinology. 2000; 141: 4255-4261
        • Ariyasu H.
        • Takaya K.
        • Tagami T.
        • Ogawa Y.
        • Hosoda K.
        • Akamizu T.
        • Suda M.
        • Koh T.
        • Natsui K.
        • Toyooka S.
        • Shirakami G.
        • Usui T.
        • Shimatsu A.
        • Doi K.
        • Hosoda H.
        • Kojima M.
        • Kangawa K.
        • Nakao K.
        Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans.
        J Clin Endocrinol Metab. 2001; 86: 4753-4758
        • Guan X.M.
        • Yu H.
        • Palyha O.C.
        • McKee K.K.
        • Feighner S.D.
        • Sirinathsinghji D.J.
        • Smith R.G.
        • van der Ploeg L.H.
        • Howard A.D.
        Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues.
        Brain Res Mol Brain Res. 1997; 48: 23-29
        • Gnanapavan S.
        • Kola B.
        • Bustin S.A.
        • Morris D.G.
        • McGee P.
        • Fairclough P.
        • Bhattacharya S.
        • Carpenter R.
        • Grossman A.B.
        • Korbonits M.
        The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans.
        J Clin Endocrinol Metab. 2002; 87: 2988
        • Zigman J.M.
        • Jones J.E.
        • Lee C.E.
        • Saper C.B.
        • Elmquist J.K.
        Expression of ghrelin receptor mRNA in the rat and the mouse brain.
        J Comp Neurol. 2006; 494: 528-548
        • Date Y.
        • Murakami N.
        • Kojima M.
        • Kuroiwa T.
        • Matsukura S.
        • Kangawa K.
        • Nakazato M.
        Central effects of a novel acylated peptide, ghrelin, on growth hormone release in rats.
        Biochem Biophys Res Commun. 2000; 275: 477-480
        • Takaya K.
        • Ariyasu H.
        • Kanamoto N.
        • Iwakura H.
        • Yoshimoto A.
        • Harada M.
        • Mori K.
        • Komatsu Y.
        • Usui T.
        • Shimatsu A.
        • Ogawa Y.
        • Hosoda K.
        • Akamizu T.
        • Kojima M.
        • Kangawa K.
        • Nakao K.
        Ghrelin strongly stimulates growth hormone release in humans.
        J Clin Endocrinol Metab. 2000; 85: 4908-4911
        • Wren A.M.
        • Small C.J.
        • Fribbens C.V.
        • Neary N.M.
        • Ward H.L.
        • Seal L.J.
        • Ghatei M.A.
        • Bloom S.R.
        The hypothalamic mechanisms of the hypophysiotropic action of ghrelin.
        Neuroendocrinology. 2002; 76: 316-324
        • Sun Y.
        • Ahmed S.
        • Smith R.G.
        Deletion of ghrelin impairs neither growth nor appetite.
        Mol Cell Biol. 2003; 23: 7973-7981
        • Sun Y.
        • Wang P.
        • Zheng H.
        • Smith R.G.
        Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor.
        Proc Natl Acad Sci U S A. 2004; 101: 4679-4684
        • Van Der Lely A.J.
        • Tschop M.
        • Heiman M.L.
        • Ghigo E.
        Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin.
        Endocr Rev. 2004; 25: 426-457
        • Howard A.D.
        • Feighner S.D.
        • Cully D.F.
        • Arena J.P.
        • Liberator P.A.
        • Rosenblum C.I.
        • Hamelin M.
        • Hreniuk D.L.
        • Palyha O.C.
        • Anderson J.
        • Paress P.S.
        • Diaz C.
        • Chou M.
        • Liu K.K.
        • McKee K.K.
        • Pong S.S.
        • Chaung L.Y.
        • Elbrecht A.
        • Dashkevicz M.
        • Heavens R.
        • Rigby M.
        • Sirinathsinghji D.J.S.
        • Dean D.C.
        • Melillo D.G.
        • van der Ploeg L.H.
        A receptor in pituitary and hypothalamus that functions in growth hormone release.
        Science. 1996; 273: 974-977
        • Thompson N.M.
        • Gill D.A.
        • Davies R.
        • Loveridge N.
        • Houston P.A.
        • Robinson I.C.
        • Wells T.
        Ghrelin and des-octanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of the type 1a growth hormone secretagogue receptor.
        Endocrinology. 2004; 145: 234-242
        • Cummings D.E.
        • Foster-Schubert K.E.
        • Overduin J.
        Ghrelin and energy balance: focus on current controversies.
        Curr Drug Targets. 2005; 6: 153-169
        • Chen H.Y.
        • Trumbauer M.E.
        • Chen A.S.
        • Weingarth D.T.
        • Adams J.R.
        • Frazier E.G.
        • Shen Z.
        • Marsh D.J.
        • Feighner S.D.
        • Guan X.M.
        • Ye Z.
        • Nargund R.P.
        • Smith R.G.
        • van der Ploeg L.H.
        • Howard A.D.
        • MacNeil D.J.
        • Qian S.
        Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y (NPY) and agouti-related protein (AgRP).
        Endocrinology. 2004; 145: 2007-2012
        • Wren A.M.
        • Seal L.J.
        • Cohen M.A.
        • Brynes A.E.
        • Frost G.S.
        • Murphy K.G.
        • Dhillo W.S.
        • Ghatei M.A.
        • Bloom S.R.
        Ghrelin enhances appetite and increases food intake in humans.
        J Clin Endocrinol Metab. 2001; 86: 5992-5995
        • Willesen M.G.
        • Kristensen P.
        • Romer J.
        Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat.
        Neuroendocrinology. 1999; 70: 306-316
        • Dickson S.L.
        • Luckman S.M.
        Induction of c-fos messenger ribonucleic acid in neuropeptide Y and growth hormone (GH)-releasing factor neurons in the rat arcuate nucleus following systemic injection of the GH secretagogue, GH-releasing peptide-6.
        Endocrinology. 1997; 138: 771-777
        • Asakawa A.
        • Inui A.
        • Kaga T.
        • Yuzuriha H.
        • Nagata T.
        • Fujimiya M.
        • Katsuura G.
        • Makino S.
        • Fujino M.A.
        • Kasuga M.
        A role of ghrelin in neuroendocrine and behavioral responses to stress in mice.
        Neuroendocrinology. 2001; 74: 143-147
        • Kamegai J.
        • Tamura H.
        • Shimizu T.
        • Ishii S.
        • Sugihara H.
        • Wakabayashi I.
        Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression.
        Endocrinology. 2000; 141: 4797-4800
        • Cowley M.A.
        • Smith R.G.
        • Diano S.
        • Tschop M.
        • Pronchuk N.
        • Grove K.L.
        • Strasburger C.J.
        • Bidlingmaier M.
        • Esterman M.
        • Heiman M.L.
        • Garcia-Segura L.M.
        • Nillni E.A.
        • Mendez P.
        • Low M.J.
        • Sotonyi P.
        • Friedman J.M.
        • Liu H.
        • Pinto S.
        • Colmers W.F.
        • Cone R.D.
        • Horvath T.L.
        The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis.
        Neuron. 2003; 37: 649-661
        • Bewick G.A.
        • Gardiner J.V.
        • Dhillo W.S.
        • Kent A.S.
        • White N.E.
        • Webster Z.
        • Ghatei M.A.
        • Bloom S.R.
        Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype.
        FASEB J. 2005; 19: 1680-1682
        • Date Y.
        • Murakami N.
        • Toshinai K.
        • Matsukura S.
        • Niijima A.
        • Matsuo H.
        • Kangawa K.
        • Nakazato M.
        The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats.
        Gastroenterology. 2002; 123: 1120-1128
        • Carlini V.P.
        • Varas M.M.
        • Cragnolini A.B.
        • Schioth H.B.
        • Scimonelli T.N.
        • de Barioglio S.R.
        Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin.
        Biochem Biophys Res Commun. 2004; 313: 635-641
        • Naleid A.M.
        • Grace M.K.
        • Cummings D.E.
        • Levine A.S.
        Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens.
        Peptides. 2005; 26: 2274-2279
        • Bednarek M.A.
        • Feighner S.D.
        • Pong S.S.
        • McKee K.K.
        • Hreniuk D.L.
        • Silva M.V.
        • Warren V.A.
        • Howard A.D.
        • van der Ploeg L.H.
        • Heck J.V.
        Structure–function studies on the new growth hormone-releasing peptide, ghrelin: minimal sequence of ghrelin necessary for activation of growth hormone secretagogue receptor 1a.
        J Med Chem. 2000; 43: 4370-4376
        • Matsumoto M.
        • Kitajima Y.
        • Iwanami T.
        • Hayashi Y.
        • Tanaka S.
        • Minamitake Y.
        • Hosoda H.
        • Kojima M.
        • Matsuo H.
        • Kangawa K.
        Structural similarity of ghrelin derivatives to peptidyl growth hormone secretagogues.
        Biochem Biophys Res Commun. 2001; 284: 655-659
        • Cummings D.E.
        • Purnell J.Q.
        • Frayo R.S.
        • Schmidova K.
        • Wisse B.E.
        • Weigle D.S.
        A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans.
        Diabetes. 2001; 50: 1714-1719
        • Tschop M.
        • Wawarta R.
        • Riepl R.L.
        • Friedrich S.
        • Bidlingmaier M.
        • Landgraf R.
        • Folwaczny C.
        Post-prandial decrease of circulating human ghrelin levels.
        J Endocrinol Invest. 2001; 24: RC19-RC21
        • Drazen D.L.
        • Vahl T.P.
        • D’Alessio D.A.
        • Seeley R.J.
        • Woods S.C.
        Effects of a fixed meal pattern on ghrelin secretion: evidence for a learned response independent of nutrient status.
        Endocrinology. 2006; 147: 23-30
        • Sugino T.
        • Yamaura J.
        • Yamagishi M.
        • Ogura A.
        • Hayashi R.
        • Kurose Y.
        • Kojima M.
        • Kangawa K.
        • Hasegawa Y.
        • Terashima Y.
        A transient surge of ghrelin secretion before feeding is modified by different feeding regimens in sheep.
        Biochem Biophys Res Commun. 2002; 298: 785-788
        • Miura H.
        • Tsuchiya N.
        • Sasaki I.
        • Kikuchi M.
        • Kojima M.
        • Kangawa K.
        • Hasegawa Y.
        • Ohnami Y.
        Changes in plasma ghrelin and growth hormone concentrations in mature Holstein cows and three-month-old calves.
        J Anim Sci. 2004; 82: 1329-1333
        • Cummings D.E.
        • Frayo R.S.
        • Marmonier C.
        • Aubert R.
        • Chapelot D.
        Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues.
        Am J Physiol Endocrinol Metab. 2004; 287: E297-E304
        • Callahan H.S.
        • Cummings D.E.
        • Pepe M.S.
        • Breen P.A.
        • Matthys C.C.
        • Weigle D.S.
        Postprandial suppression of plasma ghrelin level is proportional to ingested caloric load but does not predict intermeal interval in humans.
        J Clin Endocrinol Metab. 2004; 89: 1319-1324
        • Monteleone P.
        • Bencivenga R.
        • Longobardi N.
        • Serritella C.
        • Maj M.
        Differential responses of circulating ghrelin to high-fat or high-carbohydrate meal in healthy women.
        J Clin Endocrinol Metab. 2003; 88: 5510-5514
        • Overduin J.
        • Frayo R.S.
        • Grill H.J.
        • Kaplan J.M.
        • Cummings D.E.
        Role of the duodenum and macronutrient type in ghrelin regulation.
        Endocrinology. 2005; 146: 845-850
        • Choi K.
        • Roh S.G.
        • Hong Y.H.
        • Shrestha Y.B.
        • Hishikawa D.
        • Chen C.
        • Kojima M.
        • Kangawa K.
        • Sasaki S.
        The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis.
        Endocrinology. 2003; 144: 754-759
        • Matsumura K.
        • Tsuchihashi T.
        • Fujii K.
        • Abe I.
        • Iida M.
        Central ghrelin modulates sympathetic activity in conscious rabbits.
        Hypertension. 2002; 40: 694-699
        • Tsolakis A.V.
        • Portela-Gomes G.M.
        • Stridsberg M.
        • Grimelius L.
        • Sundin A.
        • Eriksson B.K.
        • Oberg K.E.
        • Janson E.T.
        Malignant gastric ghrelinoma with hyperghrelinemia.
        J Clin Endocrinol Metab. 2004; 89: 3739-3744
        • Tschop M.
        • Weyer C.
        • Tataranni P.A.
        • Devanarayan V.
        • Ravussin E.
        • Heiman M.L.
        Circulating ghrelin levels are decreased in human obesity.
        Diabetes. 2001; 50: 707-709
        • Shiiya T.
        • Nakazato M.
        • Mizuta M.
        • Date Y.
        • Mondal M.S.
        • Tanaka M.
        • Nozoe S.
        • Hosoda H.
        • Kangawa K.
        • Matsukura S.
        Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion.
        J Clin Endocrinol Metab. 2002; 87: 240-244
        • Otto B.
        • Cuntz U.
        • Fruehauf E.
        • Wawarta R.
        • Folwaczny C.
        • Riepl R.L.
        • Heiman M.L.
        • Lehnert P.
        • Fichter M.
        • Tschop M.
        Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa.
        Eur J Endocrinol. 2001; 145: 669-673
        • Tolle V.
        • Kadem M.
        • Bluet-Pajot M.T.
        • Frere D.
        • Foulon C.
        • Bossu C.
        • Dardennes R.
        • Mounier C.
        • Zizzari P.
        • Lang F.
        • Epelbaum J.
        • Estour B.
        Balance in ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women.
        J Clin Endocrinol Metab. 2003; 88: 109-116
        • Nagaya N.
        • Uematsu M.
        • Kojima M.
        • Date Y.
        • Nakazato M.
        • Okumura H.
        • Hosoda H.
        • Shimizu W.
        • Yamagishi M.
        • Oya H.
        • Koh H.
        • Yutani C.
        • Kangawa K.
        Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors.
        Circulation. 2001; 104: 2034-2038
        • Shimizu Y.
        • Nagaya N.
        • Isobe T.
        • Imazu M.
        • Okumura H.
        • Hosoda H.
        • Kojima M.
        • Kangawa K.
        • Kohno N.
        Increased plasma ghrelin level in lung cancer cachexia.
        Clin Cancer Res. 2003; 9: 774-778
        • Hansen T.K.
        • Dall R.
        • Hosoda H.
        • Kojima M.
        • Kangawa K.
        • Christiansen J.S.
        • Jorgensen J.O.
        Weight loss increases circulating levels of ghrelin in human obesity.
        Clin Endocrinol (Oxf). 2002; 56: 203-206
        • Cummings D.E.
        • Weigle D.S.
        • Frayo R.S.
        • Breen P.A.
        • Ma M.K.
        • Dellinger E.P.
        • Purnell J.Q.
        Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery.
        N Engl J Med. 2002; 346: 1623-1630
        • Ravussin E.
        • Tschop M.
        • Morales S.
        • Bouchard C.
        • Heiman M.L.
        Plasma ghrelin concentration and energy balance: overfeeding and negative energy balance studies in twins.
        J Clin Endocrinol Metab. 2001; 86: 4547-4551
        • Cummings D.E.
        • Clement K.
        • Purnell J.Q.
        • Vaisse C.
        • Foster K.E.
        • Frayo R.S.
        • Schwartz M.W.
        • Basdevant A.
        • Weigle D.S.
        Elevated plasma ghrelin levels in Prader Willi syndrome.
        Nat Med. 2002; 8: 643-644
        • DelParigi A.
        • Tschop M.
        • Heiman M.L.
        • Salbe A.D.
        • Vozarova B.
        • Sell S.M.
        • Bunt J.C.
        • Tataranni P.A.
        High circulating ghrelin: a potential cause for hyperphagia and obesity in prader-willi syndrome.
        J Clin Endocrinol Metab. 2002; 87: 5461-5464
        • Erdie-Lalena C.R.
        • Holm V.A.
        • Kelly P.C.
        • Frayo R.S.
        • Cummings D.E.
        Ghrelin levels in young children with Prader-Willi syndrome.
        J Pediatr. 2006; 149: 199-204
        • Tan T.M.
        • Vanderpump M.
        • Khoo B.
        • Patterson M.
        • Ghatei M.A.
        • Goldstone A.P.
        Somatostatin infusion lowers plasma ghrelin without reducing appetite in adults with Prader-Willi syndrome.
        J Clin Endocrinol Metab. 2004; 89: 4162-4165
        • Luquet S.
        • Perez F.A.
        • Hnasko T.S.
        • Palmiter R.D.
        NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates.
        Science. 2005; 310: 683-685
        • Wortley K.E.
        • Del Rincon J.P.
        • Murray J.D.
        • Garcia K.
        • Iida K.
        • Thorner M.O.
        • Sleeman M.W.
        Absence of ghrelin protects against early-onset obesity.
        J Clin Invest. 2005; 115: 3573-3578
        • Holst B.
        • Egerod K.L.
        • Schild E.
        • Vickers S.P.
        • Cheetham S.
        • Gerlach L.O.
        • Storjohann L.
        • Stidsen C.E.
        • Jones R.
        • Beck-Sickinger A.G.
        • Schwartz T.W.
        GPR39 signaling is stimulated by zinc ions but not by obestatin.
        Endocrinology. 2007; 148: 13-20
        • Nogueiras R.
        • Pfluger P.
        • Tovar S.
        • Myrtha A.
        • Mitchell S.
        • Morris A.
        • Perez-Tilve D.
        • Vazquez M.J.
        • Wiedmer P.
        • Castaneda T.R.
        • Dimarchi R.
        • Tschop M.
        • Schurmann A.
        • Joost H.G.
        • Williams L.M.
        • Langhans W.
        • Dieguez C.
        Effects of obestatin on energy balance and growth hormone secretion in rodents.
        Endocrinology. 2007; 148: 21-26
        • English P.J.
        • Ghatei M.A.
        • Malik I.A.
        • Bloom S.R.
        • Wilding J.P.
        Food fails to suppress ghrelin levels in obese humans.
        J Clin Endocrinol Metab. 2002; 87: 2984
        • Druce M.R.
        • Wren A.M.
        • Park A.J.
        • Milton J.E.
        • Patterson M.
        • Frost G.
        • Ghatei M.A.
        • Small C.
        • Bloom S.R.
        Ghrelin increases food intake in obese as well as lean subjects.
        Int J Obes (Lond). 2005; 29: 1130-1136
        • Holst B.
        • Cygankiewicz A.
        • Jensen T.H.
        • Ankersen M.
        • Schwartz T.W.
        High constitutive signaling of the ghrelin receptor—identification of a potent inverse agonist.
        Mol Endocrinol. 2003; 17: 2201-2210
        • Helmling S.
        • Maasch C.
        • Eulberg D.
        • Buchner K.
        • Schroder W.
        • Lange C.
        • Vonhoff S.
        • Wlotzka B.
        • Tschop M.H.
        • Rosewicz S.
        • Klussmann S.
        Inhibition of ghrelin action in vitro and in vivo by an RNA-Spiegelmer.
        Proc Natl Acad Sci U S A. 2004; 101: 13174-13179
        • Kobelt P.
        • Helmling S.
        • Stengel A.
        • Wlotzka B.
        • Andresen V.
        • Klapp B.F.
        • Wiedenmann B.
        • Klussmann S.
        • Monnikes H.
        Anti-ghrelin Spiegelmer NOX-B11 inhibits neurostimulatory and orexigenic effects of peripheral ghrelin in rats.
        Gut. 2006; 55: 788-792
        • Shearman L.P.
        • Wang S.P.
        • Helmling S.
        • Stribling D.S.
        • Mazur P.
        • Ge L.
        • Wang L.
        • Klussmann S.
        • MacIntyre D.E.
        • Howard A.D.
        • Strack A.M.
        Ghrelin neutralization by a ribonucleic acid-SPM ameliorates obesity in diet-induced obese mice.
        Endocrinology. 2006; 147: 1517-1526
        • Baldanzi G.
        • Filigheddu N.
        • Cutrupi S.
        • Catapano F.
        • Bonissoni S.
        • Fubini A.
        • Malan D.
        • Baj G.
        • Granata R.
        • Broglio F.
        • Papotti M.
        • Surico N.
        • Bussolino F.
        • Isgaard J.
        • Deghenghi R.
        • Sinigaglia F.
        • Prat M.
        • Muccioli G.
        • Ghigo E.
        • Graziani A.
        Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT.
        J Cell Biol. 2002; 159: 1029-1037
        • Nagaya N.
        • Kojima M.
        • Uematsu M.
        • Yamagishi M.
        • Hosoda H.
        • Oya H.
        • Hayashi Y.
        • Kangawa K.
        Hemodynamic and hormonal effects of human ghrelin in healthy volunteers.
        Am J Physiol Regul Integr Comp Physiol. 2001; 280: R1483-R1487
        • Nagaya N.
        • Uematsu M.
        • Kojima M.
        • Ikeda Y.
        • Yoshihara F.
        • Shimizu W.
        • Hosoda H.
        • Hirota Y.
        • Ishida H.
        • Mori H.
        • Kangawa K.
        Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure.
        Circulation. 2001; 104: 1430-1435
        • Dixit V.D.
        • Taub D.D.
        Ghrelin and immunity: a young player in an old field.
        Exp Gerontol. 2005; 40: 900-910
        • Neary N.M.
        • Small C.J.
        • Wren A.M.
        • Lee J.L.
        • Druce M.R.
        • Palmieri C.
        • Frost G.S.
        • Ghatei M.A.
        • Coombes R.C.
        • Bloom S.R.
        Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial.
        J Clin Endocrinol Metab. 2004; 89: 2832-2836
        • Wynne K.
        • Giannitsopoulou K.
        • Small C.J.
        • Patterson M.
        • Frost G.
        • Ghatei M.A.
        • Brown E.A.
        • Bloom S.R.
        • Choi P.
        Subcutaneous ghrelin enhances acute food intake in malnourished patients who receive maintenance peritoneal dialysis: a randomized, placebo-controlled trial.
        J Am Soc Nephrol. 2005; 16: 2111-2118
        • Nagaya N.
        • Moriya J.
        • Yasumura Y.
        • Uematsu M.
        • Ono F.
        • Shimizu W.
        • Ueno K.
        • Kitakaze M.
        • Miyatake K.
        • Kangawa K.
        Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure.
        Circulation. 2004; 110: 3674-3679
        • Nagaya N.
        • Itoh T.
        • Murakami S.
        • Oya H.
        • Uematsu M.
        • Miyatake K.
        • Kangawa K.
        Treatment of cachexia with ghrelin in patients with COPD.
        Chest. 2005; 128: 1187-1193
        • Druce M.R.
        • Neary N.M.
        • Small C.J.
        • Milton J.
        • Monteiro M.
        • Patterson M.
        • Ghatei M.A.
        • Bloom S.R.
        Subcutaneous administration of ghrelin stimulates energy intake in healthy lean human volunteers.
        Int J Obes (Lond). 2006; 30: 293-296
        • Bowers C.Y.
        Unnatural growth hormone-releasing peptide begets natural ghrelin.
        J Clin Endocrinol Metab. 2001; 86: 1464-1469
        • Smith R.G.
        • Palyha O.C.
        • Feighner S.D.
        • Tan C.P.
        • McKee K.K.
        • Hreniuk D.L.
        • Yang L.
        • Morriello G.
        • Nargund R.
        • Patchett A.A.
        • Howard A.D.
        Growth hormone releasing substances: types and their receptors.
        Horm Res. 1999; 51: 1-8
        • Gibbs J.
        • Young R.C.
        • Smith G.P.
        Cholecystokinin decreases food intake in rats.
        J Comp Physiol Psychol. 1973; 84: 488-495
        • Dockray G.J.
        Peptides of the gut and brain: the cholecystokinins.
        Proc Nutr Soc. 1987; 46: 119-124
        • Moran T.H.
        Cholecystokinin and satiety: current perspectives.
        Nutrition. 2000; 16: 858-865
        • Dockray G.
        Gut endocrine secretions and their relevance to satiety.
        Curr Opin Pharmacol. 2004; 4: 557-560
        • West D.B.
        • Greenwood M.R.
        • Marshall K.A.
        • Woods S.C.
        Lithium chloride, cholecystokinin and meal patterns: evidence that cholecystokinin suppresses meal size in rats without causing malaise.
        Appetite. 1987; 8: 221-227
        • Asin K.E.
        • Gore Jr, P.A.
        • Bednarz L.
        • Holladay M.
        • Nadzan A.M.
        Effects of selective CCK receptor agonists on food intake after central or peripheral administration in rats.
        Brain Res. 1992; 571: 169-174
        • Reidelberger R.D.
        • Solomon T.E.
        Comparative effects of CCK-8 on feeding, sham feeding, and exocrine pancreatic secretion in rats.
        Am J Physiol. 1986; 251: R97-R105
        • Beglinger C.
        • Degen L.
        • Matzinger D.
        • D’Amato M.
        • Drewe J.
        Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans.
        Am J Physiol Regul Integr Comp Physiol. 2001; 280: R1149-R1154
        • Matson C.A.
        • Reid D.F.
        • Cannon T.A.
        • Ritter R.C.
        Cholecystokinin and leptin act synergistically to reduce body weight.
        Am J Physiol Regul Integr Comp Physiol. 2000; 278: R882-R890
        • McLaughlin C.L.
        • Baile C.A.
        • Buonomo F.C.
        Effect of CCK antibodies on food intake and weight gain in Zucker rats.
        Physiol Behav. 1985; 34: 277-282
        • Meereis-Schwanke K.
        • Klonowski-Stumpe H.
        • Herberg L.
        • Niederau C.
        Long-term effects of CCK-agonist and -antagonist on food intake and body weight in Zucker lean and obese rats.
        Peptides. 1998; 19: 291-299
        • Moran T.H.
        • Katz L.F.
        • Plata-Salaman C.R.
        • Schwartz G.J.
        Disordered food intake and obesity in rats lacking cholecystokinin A receptors.
        Am J Physiol. 1998; 274: R618-R625
        • West D.B.
        • Fey D.
        • Woods S.C.
        Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats.
        Am J Physiol. 1984; 246: R776-R787
        • Crawley J.N.
        • Beinfeld M.C.
        Rapid development of tolerance to the behavioural actions of cholecystokinin.
        Nature. 1983; 302: 703-706
        • Larhammar D.
        Structural diversity of receptors for neuropeptide Y, peptide YY and pancreatic polypeptide.
        Regul Pept. 1996; 65: 165-174
        • Eberlein G.A.
        • Eysselein V.E.
        • Schaeffer M.
        • Layer P.
        • Grandt D.
        • Goebell H.
        • Niebel W.
        • Davis M.
        • Lee T.D.
        • Shively J.E.
        A new molecular form of PYY: structural characterization of human PYY(3–36) and PYY(1–36).
        Peptides. 1989; 10: 797-803
        • Adrian T.E.
        • Ferri G.L.
        • Bacarese-Hamilton A.J.
        • Fuessl H.S.
        • Polak J.M.
        • Bloom S.R.
        Human distribution and release of a putative new gut hormone, peptide YY.
        Gastroenterology. 1985; 89: 1070-1077
        • Adrian T.E.
        • Savage A.P.
        • Sagor G.R.
        • Allen J.M.
        • Bacarese-Hamilton A.J.
        • Tatemoto K.
        • Polak J.M.
        • Bloom S.R.
        Effect of peptide YY on gastric, pancreatic, and biliary function in humans.
        Gastroenterology. 1985; 89: 494-499
        • Le Roux C.W.
        • Batterham R.L.
        • Aylwin S.J.
        • Patterson M.
        • Borg C.M.
        • Wynne K.J.
        • Kent A.
        • Vincent R.P.
        • Gardiner J.
        • Ghatei M.A.
        • Bloom S.R.
        Attenuated peptide YY release in obese subjects is associated with reduced satiety.
        Endocrinology. 2006; 147: 3-8
        • Batterham R.L.
        • Cowley M.A.
        • Small C.J.
        • Herzog H.
        • Cohen M.A.
        • Dakin C.L.
        • Wren A.M.
        • Brynes A.E.
        • Low M.J.
        • Ghatei M.A.
        • Cone R.D.
        • Bloom S.R.
        Gut hormone PYY(3-36) physiologically inhibits food intake.
        Nature. 2002; 418: 650-654
        • Batterham R.L.
        • Cohen M.A.
        • Ellis S.M.
        • Le Roux C.W.
        • Withers D.J.
        • Frost G.S.
        • Ghatei M.A.
        • Bloom S.R.
        Inhibition of food intake in obese subjects by peptide YY3-36.
        N Engl J Med. 2003; 349: 941-948
        • Chelikani P.K.
        • Haver A.C.
        • Reidelberger R.D.
        Intravenous infusion of peptide YY(3–36) potently inhibits food intake in rats.
        Endocrinology. 2005; 146: 879-888
        • Adams S.H.
        • Won W.B.
        • Schonhoff S.E.
        • Leiter A.B.
        • Paterniti Jr, J.R.
        Effects of peptide YY[3-36] on short-term food intake in mice are not affected by prevailing plasma ghrelin levels.
        Endocrinology. 2004; 145: 4967-4975
        • Degen L.
        • Oesch S.
        • Casanova M.
        • Graf S.
        • Ketterer S.
        • Drewe J.
        • Beglinger C.
        Effect of peptide YY3-36 on food intake in humans.
        Gastroenterology. 2005; 129: 1430-1436
        • Tschop M.
        • Castaneda T.R.
        • Joost H.J.
        • Thone-Reinke C.
        • Klaus S.
        • Hagan M.M.
        • Chandler P.C.
        • Oswald K.D.
        • Benoit S.C.
        • Seeley R.J.
        • Kinzig K.P.
        • Moran T.H.
        • Beck-Sickinger A.G.
        • Koglin N.
        • Rodgers R.J.
        • et al.
        Does gut hormone PYY 3-36 decrease food intake in rodents?.
        Nature. 2004; 430: 1-4
        • Abbott C.R.
        • Small C.J.
        • Sajedi A.
        • Smith K.L.
        • Parkinson J.R.
        • Broadhead L.L.
        • Ghatei M.A.
        • Bloom S.R.
        The importance of acclimatisation and habituation to experimental conditions when investigating the anorectic effects of gastrointestinal hormones in the rat.
        Int J Obes (Lond). 2006; 30: 288-292
        • Chelikani P.K.
        • Haver A.C.
        • Reeve Jr, J.R.
        • Keire D.A.
        • Reidelberger R.D.
        Daily, intermittent intravenous infusion of peptide YY(3–36) reduces daily food intake and adiposity in rats.
        Am J Physiol Regul Integr Comp Physiol. 2006; 290: R298-R305
        • Schonhoff S.
        • Baggio L.
        • Ratineau C.
        • Ray S.K.
        • Lindner J.
        • Magnuson M.A.
        • Drucker D.J.
        • Leiter A.B.
        Energy homeostasis and gastrointestinal endocrine differentiation do not require the anorectic hormone peptide YY.
        Mol Cell Biol. 2005; 25: 4189-4199
        • Boey D.
        • Lin S.
        • Karl T.
        • Baldock P.
        • Lee N.
        • Enriquez R.
        • Couzens M.
        • Slack K.
        • Dallmann R.
        • Sainsbury A.
        • Herzog H.
        Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity.
        Diabetologia. 2006; 49: 1360-1370
        • Batterham R.L.
        • Heffron H.
        • Kapoor S.
        • Chivers J.E.
        • Chandarana K.
        • Herzog H.
        • Le Roux C.W.
        • Thomas E.L.
        • Bell J.D.
        • Withers D.J.
        Critical role for peptide YY in protein-mediated satiation and body-weight regulation.
        Cell Metab. 2006; 4: 223-233
        • Roth C.L.
        • Enriori P.J.
        • Harz K.
        • Woelfle J.
        • Cowley M.A.
        • Reinehr T.
        Peptide YY is a regulator of energy homeostasis in obese children before and after weight loss.
        J Clin Endocrinol Metab. 2005; 90: 6386-6391
        • Alvarez B.M.
        • Borque M.
        • Martinez-Sarmiento J.
        • Aparicio E.
        • Hernandez C.
        • Cabrerizo L.
        • Fernandez-Represa J.A.
        Peptide YY secretion in morbidly obese patients before and after vertical banded gastroplasty.
        Obes Surg. 2002; 12: 324-327
        • Stock S.
        • Leichner P.
        • Wong A.C.
        • Ghatei M.A.
        • Kieffer T.J.
        • Bloom S.R.
        • Chanoine J.P.
        Ghrelin, peptide YY, glucose-dependent insulinotropic polypeptide, and hunger responses to a mixed meal in anorexic, obese, and control female adolescents.
        J Clin Endocrinol Metab. 2005; 90: 2161-2168
        • Korner J.
        • Bessler M.
        • Cirilo L.J.
        • Conwell I.M.
        • Daud A.
        • Restuccia N.L.
        • Wardlaw S.L.
        Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin.
        J Clin Endocrinol Metab. 2005; 90: 359-365
        • Abbott C.R.
        • Small C.J.
        • Kennedy A.R.
        • Neary N.M.
        • Sajedi A.
        • Ghatei M.A.
        • Bloom S.R.
        Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3–36) on food intake.
        Brain Res. 2005; 1043: 139-144
        • Halatchev I.G.
        • Ellacott K.L.
        • Fan W.
        • Cone R.D.
        Peptide YY3–36 inhibits food intake in mice through a melanocortin-4 receptor-independent mechanism.
        Endocrinology. 2004; 145: 2585-2590
        • Abbott C.R.
        • Monteiro M.
        • Small C.J.
        • Sajedi A.
        • Smith K.L.
        • Parkinson J.R.
        • Ghatei M.A.
        • Bloom S.R.
        The inhibitory effects of peripheral administration of peptide YY(3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway.
        Brain Res. 2005; 1044: 127-131
        • Halatchev I.G.
        • Cone R.D.
        Peripheral administration of PYY(3–36) produces conditioned taste aversion in mice.
        Cell Metab. 2005; 1: 159-168
        • Track N.S.
        • McLeod R.S.
        • Mee A.V.
        Human pancreatic polypeptide: studies of fasting and postprandial plasma concentrations.
        Can J Physiol Pharmacol. 1980; 58: 1484-1489
        • Malaisse-Lagae F.
        • Carpentier J.L.
        • Patel Y.C.
        • Malaisse W.J.
        • Orci L.
        Pancreatic polypeptide: a possible role in the regulation of food intake in the mouse.
        Experientia. 1977; 33: 915-917
        • Asakawa A.
        • Inui A.
        • Yuzuriha H.
        • Ueno N.
        • Katsuura G.
        • Fujimiya M.
        • Fujino M.A.
        • Niijima A.
        • Meguid M.M.
        • Kasuga M.
        Characterization of the effects of pancreatic polypeptide in the regulation of energy balance.
        Gastroenterology. 2003; 124: 1325-1336
        • Batterham R.L.
        • Le Roux C.W.
        • Cohen M.A.
        • Park A.J.
        • Ellis S.M.
        • Patterson M.
        • Frost G.S.
        • Ghatei M.A.
        • Bloom S.R.
        Pancreatic polypeptide reduces appetite and food intake in humans.
        J Clin Endocrinol Metab. 2003; 88: 3989-3992
        • Zipf W.B.
        • O’Dorisio T.M.
        • Cataland S.
        • Sotos J.
        Blunted pancreatic polypeptide responses in children with obesity of Prader-Willi syndrome.
        J Clin Endocrinol Metab. 1981; 52: 1264-1266
        • Berntson G.G.
        • Zipf W.B.
        • O’Dorisio T.M.
        • Hoffman J.A.
        • Chance R.E.
        Pancreatic polypeptide infusions reduce food intake in Prader-Willi syndrome.
        Peptides. 1993; 14: 497-503
        • Ueno N.
        • Inui A.
        • Iwamoto M.
        • Kaga T.
        • Asakawa A.
        • Okita M.
        • Fujimiya M.
        • Nakajima Y.
        • Ohmoto Y.
        • Ohnaka M.
        • Nakaya Y.
        • Miyazaki J.I.
        • Kasuga M.
        Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice.
        Gastroenterology. 1999; 117: 1427-1432
        • Clark J.T.
        • Kalra P.S.
        • Crowley W.R.
        • Kalra S.P.
        Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats.
        Endocrinology. 1984; 115: 427-429
        • Whitcomb D.C.
        • Taylor I.L.
        • Vigna S.R.
        Characterization of saturable binding sites for circulating pancreatic polypeptide in rat brain.
        Am J Physiol. 1990; 259: G687-G691
        • Holst J.J.
        On the physiology of GIP and GLP-1.
        Horm Metab Res. 2004; 36: 747-754
        • Drucker D.J.
        The biology of incretin hormones.
        Cell Metab. 2006; 3: 153-165
        • Turton M.D.
        • O’Shea D.
        • Gunn I.
        • Beak S.A.
        • Edwards C.M.
        • Meeran K.
        • Choi S.J.
        • Taylor G.M.
        • Heath M.M.
        • Lambert P.D.
        • Wilding J.P.
        • Smith D.M.
        • Ghatei M.A.
        • Herbert J.
        • Bloom S.R.
        A role for glucagon-like peptide-1 in the central regulation of feeding.
        Nature. 1996; 379: 69-72
        • Meeran K.
        • O’Shea D.
        • Edwards C.M.
        • Turton M.D.
        • Heath M.M.
        • Gunn I.
        • Abusnana S.
        • Rossi M.
        • Small C.J.
        • Goldstone A.P.
        • Taylor G.M.
        • Sunter D.
        • Steere J.
        • Choi S.J.
        • Ghatei M.A.
        • Bloom S.R.
        Repeated intracerebroventricular administration of glucagon-like peptide-1-(7–36) amide or exendin-(9–39) alters body weight in the rat.
        Endocrinology. 1999; 140: 244-250
        • Verdich C.
        • Toubro S.
        • Buemann B.
        • Lysgard M.J.
        • Juul H.J.
        • Astrup A.
        The role of postprandial releases of insulin and incretin hormones in meal-induced satiety—effect of obesity and weight reduction.
        Int J Obes Relat Metab Disord. 2001; 25: 1206-1214
        • Naslund E.
        • King N.
        • Mansten S.
        • Adner N.
        • Holst J.J.
        • Gutniak M.
        • Hellstrom P.M.
        Prandial subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects.
        Br J Nutr. 2004; 91: 439-446
        • Dakin C.L.
        • Gunn I.
        • Small C.J.
        • Edwards C.M.
        • Hay D.L.
        • Smith D.M.
        • Ghatei M.A.
        • Bloom S.R.
        Oxyntomodulin inhibits food intake in the rat.
        Endocrinology. 2001; 142: 4244-4250
        • Dakin C.L.
        • Small C.J.
        • Park A.J.
        • Seth A.
        • Ghatei M.A.
        • Bloom S.R.
        Repeated ICV administration of oxyntomodulin causes a greater reduction in body weight gain than in pair-fed rats.
        Am J Physiol Endocrinol Metab. 2002; 283: E1173-E1177
        • Dakin C.L.
        • Small C.J.
        • Batterham R.L.
        • Neary N.M.
        • Cohen M.A.
        • Patterson M.
        • Ghatei M.A.
        • Bloom S.R.
        Peripheral oxyntomodulin reduces food intake and body weight gain in rats.
        Endocrinology. 2004; 145: 2687-2695
        • Cohen M.A.
        • Ellis S.M.
        • Le Roux C.W.
        • Batterham R.L.
        • Park A.
        • Patterson M.
        • Frost G.S.
        • Ghatei M.A.
        • Bloom S.R.
        Oxyntomodulin suppresses appetite and reduces food intake in humans.
        J Clin Endocrinol Metab. 2003; 88: 4696-4701
        • Wynne K.
        • Park A.J.
        • Small C.J.
        • Patterson M.
        • Ellis S.M.
        • Murphy K.G.
        • Wren A.M.
        • Frost G.S.
        • Meeran K.
        • Ghatei M.A.
        • Bloom S.R.
        Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial.
        Diabetes. 2005; 54: 2390-2395
        • Wynne K.
        • Park A.
        • Small C.J.
        • Meeran K.
        • Ghatei M.A.
        • Frost G.
        • Bloom S.R.
        Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial.
        Int J Obes (Lond). 2006; 30: 1729-1736
        • Baggio L.L.
        • Huang Q.
        • Brown T.J.
        • Drucker D.J.
        Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure.
        Gastroenterology. 2004; 127: 546-558
        • Weigle D.S.
        • Duell P.B.
        • Connor W.E.
        • Steiner R.A.
        • Soules M.R.
        • Kuijper J.L.
        Effect of fasting, refeeding, and dietary fat restriction on plasma leptin levels.
        J Clin Endocrinol Metab. 1997; 82: 561-565
        • Reinehr T.
        • Roth C.L.
        • Alexy U.
        • Kersting M.
        • Kiess W.
        • Andler W.
        Ghrelin levels before and after reduction of overweight due to a low-fat high-carbohydrate diet in obese children and adolescents.
        Int J Obes (Lond). 2005; 29: 362-368
        • Le Roux C.W.
        • Aylwin S.J.
        • Batterham R.L.
        • Borg C.M.
        • Coyle F.
        • Prasad V.
        • Shurey S.
        • Ghatei M.A.
        • Patel A.G.
        • Bloom S.R.
        Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters.
        Ann Surg. 2006; 243: 108-114
        • Cummings D.E.
        • Shannon M.H.
        Ghrelin and gastric bypass: is there a hormonal contribution to surgical weight loss?.
        J Clin Endocrinol Metab. 2003; 88: 2999-3002
        • Neary N.M.
        • Small C.J.
        • Druce M.R.
        • Park A.J.
        • Ellis S.M.
        • Semjonous N.M.
        • Dakin C.L.
        • Filipsson K.
        • Wang F.
        • Kent A.S.
        • Frost G.S.
        • Ghatei M.A.
        • Bloom S.R.
        Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively.
        Endocrinology. 2005; 146: 5120-5127