Advertisement

Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X receptor target genes

      Abstract

      Math Eq Phase 1, phase 2, and cellular efflux transporters are critical components in intestinal barrier function against xenobiotics and bacteria. We therefore performed global gene expression profiling in patients with ulcerative colitis (UC) and Crohn’s disease as well as control specimens, with a special emphasis on genes involved in detoxification and epithelial membrane integrity. Math Eq Mucosal biopsy specimens from nonaffected regions of the colon and the terminal ileum were subjected to DNA microarray analysis and pathway-related data mining. Real-time reverse-transcription polymerase chain reaction was used for verification of selected regulated candidate genes in larger inflammatory bowel disease sample numbers and intestinal cell lines. Math Eq Several dysregulated genes were identified in both disease groups and tissues. A set of genes coordinately down-regulated in the colon of patients with UC was composed of cellular detoxification and defense genes, which are target genes for the transcription factor pregnane X receptor (PXR). Messenger RNA expression of ABCB1 (MDR1) and PXR was significantly reduced in the colon of patients with UC but was unaffected in patients with Crohn’s disease. In contrast to some of its target genes, the expression of PXR was not sensitive to tumor necrosis factor α stimulation of intestinal cell lines. Math Eq A disease- and tissue-specific decrease in the expression of detoxification enzymes and ABC transporters was observed, which may be explained by a loss of PXR expression. Thus, dysregulation of xenobiotic metabolism and PXR activity in the gut is likely to contribute to the pathophysiology of UC.

      Abbreviations:

      cRNA (complementary RNA), CYP (cytochrome P450), GST (glutathione S-transferase), IL (interleukin), PXR (pregnane X receptor), rRNA (ribosomal RNA), RT-PCR (reverse-transcription polymerase chain reaction), SULT (sulfotransferase), TNF (tumor necrosis factor)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hugot J.P.
        • Chamaillard M.
        • Zouali H.
        • Lesage S.
        • Cezard J.P.
        • Belaiche J.
        • Almer S.
        • Tysk C.
        • O’Morain C.A.
        • Gassull M.
        • Binder V.
        • Finkel Y.
        • Cortot A.
        • Modigliani R.
        • Laurent-Puig P.
        • Gower-Rousseau C.
        • Macry J.
        • Colombel J.F.
        • Sahbatou M.
        • Thomas G.
        Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease.
        Nature. 2001; 411: 599-603
        • Ogura Y.
        • Bonen D.K.
        • Inohara N.
        • Nicolae D.L.
        • Chen F.F.
        • Ramos R.
        • Britton H.
        • Moran T.
        • Karaliuskas R.
        • Duerr R.H.
        • Achkar J.P.
        • Brant S.R.
        • Bayless T.M.
        • Kirschner B.S.
        • Hanauer S.B.
        • Nunez G.
        • Cho J.H.
        A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease.
        Nature. 2001; 411: 603-606
        • Mizoguchi A.
        • Mizoguchi E.
        • Bhan A.K.
        Immune networks in animal models of inflammatory bowel disease.
        Inflamm Bowel Dis. 2003; 9: 246-259
        • Podolsky D.K.
        Inflammatory bowel disease.
        N Engl J Med. 2002; 347: 417-429
        • Andoh A.
        • Saotome T.
        • Sato H.
        • Tsujikawa T.
        • Araki Y.
        • Fujiyama Y.
        • Bamba T.
        Epithelial expression of caveolin-2, but not caveolin-1, is enhanced in the inflamed mucosa of patients with ulcerative colitis.
        Inflamm Bowel Dis. 2001; 7: 210-214
        • Yoshikai Y.
        The interaction of intestinal epithelial cells and intraepithelial lymphocytes in host defense.
        Immunol Res. 1999; 20: 219-235
        • Groh V.
        • Steinle A.
        • Bauer S.
        • Spies T.
        Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells.
        Science. 1998; 279: 1737-1740
        • Podolsky D.K.
        Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense.
        Am J Physiol. 1999; 277: G495-G499
        • Rath H.C.
        • Schultz M.
        • Freitag R.
        • Dieleman L.A.
        • Li F.
        • Linde H.J.
        • Scholmerich J.
        • Sartor R.B.
        Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice.
        Infect Immun. 2001; 69: 2277-2285
        • Hermiston M.L.
        • Gordon J.I.
        Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin.
        Science. 1995; 270: 1203-1207
        • Gibson P.
        • Rosella O.
        • Nov R.
        • Young G.
        Colonic epithelium is diffusely abnormal in ulcerative colitis and colorectal cancer.
        Gut. 1995; 36: 857-863
        • Jankowski J.A.
        • Bedford F.K.
        • Boulton R.A.
        • Cruickshank N.
        • Hall C.
        • Elder J.
        • Allan R.
        • Forbes A.
        • Kim Y.S.
        • Wright N.A.
        • Sanders D.S.
        Alterations in classical cadherins associated with progression in ulcerative and Crohn’s colitis.
        Lab Invest. 1998; 78: 1155-1167
        • Kinugasa T.
        • Sakaguchi T.
        • Gu X.
        • Reinecker H.C.
        Claudins regulate the intestinal barrier in response to immune mediators.
        Gastroenterology. 2000; 118: 1001-1011
        • Schmitz H.
        • Barmeyer C.
        • Fromm M.
        • Runkel N.
        • Foss H.D.
        • Bentzel C.J.
        • Riecken E.O.
        • Schulzke J.D.
        Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis.
        Gastroenterology. 1999; 116: 301-309
        • Puspok A.
        • Oberhuber G.
        • Wyatt J.
        • Maier-Dobersberger T.
        • Hammer J.
        • Pfeffel F.
        • Wrba F.
        • Potzi R.
        • Vogelsang H.
        Gastroduodenal permeability in Crohn’s disease.
        Eur J Clin Invest. 1998; 28: 67-71
        • Gassler N.
        • Rohr C.
        • Schneider A.
        • Kartenbeck J.
        • Bach A.
        • Obermuller N.
        • Otto H.F.
        • Autschbach F.
        Inflammatory bowel disease is associated with changes of enterocytic junctions.
        Am J Physiol. 2001; 281: G216-G228
        • Roediger W.E.
        • Babidge W.
        Human colonocyte detoxification.
        Gut. 1997; 41: 731-734
        • Ding X.
        • Kaminsky L.S.
        Human extrahepatic cytochromes P450.
        Annu Rev Pharmacol Toxicol. 2003; 43: 149-173
        • Fonti R.
        • Latella G.
        • Caprilli R.
        • Frieri G.
        • Marcheggiano A.
        • Sambuy Y.
        Carbonic anhydrase I reduction in colonic mucosa of patients with active ulcerative colitis.
        Dig Dis Sci. 1998; 43: 2086-2092
        • Schwer H.
        • Langmann T.
        • Daig R.
        • Becker A.
        • Aslanidis C.
        • Schmitz G.
        Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver.
        Biochem Biophys Res Commun. 1997; 233: 117-120
        • Chen G.
        • Zhang D.
        • Jing N.
        • Yin S.
        • Falany C.N.
        • Radominska-Pandya A.
        Human gastrointestinal sulfotransferases.
        Toxicol Appl Pharmacol. 2003; 187: 186-197
        • Back D.J.
        • Rogers S.M.
        Review.
        Aliment Pharmacol Ther. 1987; 1: 339-357
        • Pacifici G.M.
        • Franchi M.
        • Bencini C.
        • Repetti F.
        • Di Lascio N.
        • Muraro G.B.
        Tissue distribution of drug-metabolizing enzymes in humans.
        Xenobiotica. 1988; 18: 849-856
        • Toyota M.
        • Itoh F.
        • Kikuchi T.
        • Satoh A.
        • Obata T.
        • Suzuki H.
        • Ishii S.
        • Endo T.
        • Tokino T.
        • Imai K.
        DNA methylation changes in gastrointestinal disease.
        J Gastroenterol. 2002; 37: 97-101
        • McCarver D.G.
        • Hines R.N.
        The ontogeny of human drug-metabolizing enzymes.
        J Pharmacol Exp Ther. 2002; 300: 361-366
        • Suzuki H.
        • Sugiyama Y.
        Role of metabolic enzymes and efflux transporters in the absorption of drugs from the small intestine.
        Eur J Pharm Sci. 2000; 12: 3-12
        • Martensson J.
        • Jain A.
        • Meister A.
        Glutathione is required for intestinal function.
        Proc Natl Acad Sci U S A. 1990; 87: 1715-1719
        • Loguercio C.
        • D’Argenio G.
        • Delle C.M.
        • Cosenza V.
        • Della V.N.
        • Mazzacca G.
        • Del Vecchio B.C.
        Glutathione supplementation improves oxidative damage in experimental colitis.
        Dig Liver Dis. 2003; 35: 635-641
        • Esworthy R.S.
        • Aranda R.
        • Martin M.G.
        • Doroshow J.H.
        • Binder S.W.
        • Chu F.F.
        Mice with combined disruption of Gpx1 and Gpx2 genes have colitis.
        Am J Physiol. 2001; 281: G848-G855
        • Esworthy R.S.
        • Binder S.W.
        • Doroshow J.H.
        • Chu F.F.
        Microflora trigger colitis in mice deficient in selenium-dependent glutathione peroxidase and induce Gpx2 gene expression.
        Biol Chem. 2003; 384: 597-607
        • Sido B.
        • Hack V.
        • Hochlehnert A.
        • Lipps H.
        • Herfarth C.
        • Droge W.
        Impairment of intestinal glutathione synthesis in patients with inflammatory bowel disease.
        Gut. 1998; 42: 485-492
        • Ho G.T.
        • Moodie F.M.
        • Satsangi J.
        Multidrug resistance 1 gene (P-glycoprotein 170).
        Gut. 2003; 52: 759-766
        • Langmann T.
        • Mauerer R.
        • Zahn A.
        • Moehle C.
        • Probst M.
        • Stremmel W.
        • Schmitz G.
        Real-time reverse transcription-PCR expression profiling of the complete human ATP-binding cassette transporter superfamily in various tissues.
        Clin Chem. 2003; 49: 230-238
        • Panwala C.M.
        • Jones J.C.
        • Viney J.L.
        A novel model of inflammatory bowel disease.
        J Immunol. 1998; 161: 5733-5744
        • Maggio-Price L.
        • Shows D.
        • Waggie K.
        • Burich A.
        • Zeng W.
        • Escobar S.
        • Morrissey P.
        • Viney J.L.
        Helicobacter bilis infection accelerates and H. hepaticus infection delays the development of colitis in multiple drug resistance-deficient (mdr1a−/−) mice.
        Am J Pathol. 2002; 160: 739-751
        • Schwab M.
        • Schaeffeler E.
        • Marx C.
        • Fromm M.F.
        • Kaskas B.
        • Metzler J.
        • Stange E.
        • Herfarth H.
        • Schoelmerich J.
        • Gregor M.
        • Walker S.
        • Cascorbi I.
        • Roots I.
        • Brinkmann U.
        • Zanger U.M.
        • Eichelbaum M.
        Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative colitis.
        Gastroenterology. 2003; 124: 26-33
        • Brant S.R.
        • Panhuysen C.I.
        • Nicolae D.
        • Reddy D.M.
        • Bonen D.K.
        • Karaliukas R.
        • Zhang L.
        • Swanson E.
        • Datta L.W.
        • Moran T.
        • Ravenhill G.
        • Duerr R.H.
        • Achkar J.P.
        • Karban A.S.
        • Cho J.H.
        MDR1 Ala893 polymorphism is associated with inflammatory bowel disease.
        Am J Hum Genet. 2003; 73: 1282-1292
        • Fronhoffs S.
        • Totzke G.
        • Stier S.
        • Wernert N.
        • Rothe M.
        • Bruning T.
        • Koch B.
        • Sachinidis A.
        • Vetter H.
        • Ko Y.
        A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction.
        Mol Cell Probes. 2002; 16: 99-110
        • Suzuki Y.
        • Yamashita R.
        • Nakai K.
        • Sugano S.
        DBTSS.
        Nucleic Acids Res. 2002; 30: 328-331
        • Podvinec M.
        • Kaufmann M.R.
        • Handschin C.
        • Meyer U.A.
        NUBIScan, an in silico approach for prediction of nuclear receptor response elements.
        Mol Endocrinol. 2002; 16: 1269-1279
        • Berge K.E.
        • Tian H.
        • Graf G.A.
        • Yu L.
        • Grishin N.V.
        • Schultz J.
        • Kwiterovich P.
        • Shan B.
        • Barnes R.
        • Hobbs H.H.
        Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters.
        Science. 2000; 290: 1771-1775
        • Lee M.H.
        • Lu K.
        • Hazard S.
        • Yu H.
        • Shulenin S.
        • Hidaka H.
        • Kojima H.
        • Allikmets R.
        • Sakuma N.
        • Pegoraro R.
        • Srivastava A.K.
        • Salen G.
        • Dean M.
        • Patel S.B.
        Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption.
        Nat Genet. 2001; 27: 79-83
        • Mizoguchi E.
        • Xavier R.J.
        • Reinecker H.C.
        • Uchino H.
        • Bhan A.K.
        • Podolsky D.K.
        • Mizoguchi A.
        Colonic epithelial functional phenotype varies with type and phase of experimental colitis.
        Gastroenterology. 2003; 125: 148-161
        • Maglich J.M.
        • Stoltz C.M.
        • Goodwin B.
        • Hawkins-Brown D.
        • Moore J.T.
        • Kliewer S.A.
        Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification.
        Mol Pharmacol. 2002; 62: 638-646
        • Waxman D.J.
        P450 gene induction by structurally diverse xenochemicals.
        Arch Biochem Biophys. 1999; 369: 11-23
        • Rosenfeld J.M.
        • Vargas Jr, R.
        • Xie W.
        • Evans R.M.
        Genetic profiling defines the xenobiotic gene network controlled by the nuclear receptor pregnane X receptor.
        Mol Endocrinol. 2003; 17: 1268-1282
        • Hisamatsu T.
        • Suzuki M.
        • Reinecker H.C.
        • Nadeau W.J.
        • McCormick B.A.
        • Podolsky D.K.
        CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells.
        Gastroenterology. 2003; 124: 993-1000
        • Rosenstiel P.
        • Fantini M.
        • Brautigam K.
        • Kuhbacher T.
        • Waetzig G.H.
        • Seegert D.
        • Schreiber S.
        TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells.
        Gastroenterology. 2003; 124: 1001-1009
        • Pascussi J.M.
        • Gerbal-Chaloin S.
        • Drocourt L.
        • Maurel P.
        • Vilarem M.J.
        The expression of CYP2B6, CYP2C9 and CYP3A4 genes.
        Biochim Biophys Acta. 2003; 1619: 243-253
        • Heller R.A.
        • Schena M.
        • Chai A.
        • Shalon D.
        • Bedilion T.
        • Gilmore J.
        • Woolley D.E.
        • Davis R.W.
        Discovery and analysis of inflammatory disease-related genes using cDNA microarrays.
        Proc Natl Acad Sci U S A. 1997; 94: 2150-2155
        • Lock C.
        • Hermans G.
        • Pedotti R.
        • Brendolan A.
        • Schadt E.
        • Garren H.
        • Langer-Gould A.
        • Strober S.
        • Cannella B.
        • Allard J.
        • Klonowski P.
        • Austin A.
        • Lad N.
        • Kaminski N.
        • Galli S.J.
        • Oksenberg J.R.
        • Raine C.S.
        • Heller R.
        • Steinman L.
        Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis.
        Nat Med. 2002; 8: 500-508
        • Dieckgraefe B.K.
        • Stenson W.F.
        • Korzenik J.R.
        • Swanson P.E.
        • Harrington C.A.
        Analysis of mucosal gene expression in inflammatory bowel disease by parallel oligonucleotide arrays.
        Physiol Genomics. 2000; 4: 1-11
        • Lawrance I.C.
        • Fiocchi C.
        • Chakravarti S.
        Ulcerative colitis and Crohn’s disease.
        Hum Mol Genet. 2001; 10: 445-456
        • Kendziorski C.M.
        • Zhang Y.
        • Lan H.
        • Attie A.D.
        The efficiency of pooling mRNA in microarray experiments.
        Biostatistics. 2003; 4: 465-477
        • Mills J.C.
        • Roth K.A.
        • Cagan R.L.
        • Gordon J.I.
        DNA microarrays and beyond.
        Nat Cell Biol. 2001; 3: E175-E178
        • Coles B.F.
        • Chen G.
        • Kadlubar F.F.
        • Radominska-Pandya A.
        Interindividual variation and organ-specific patterns of glutathione S-transferase alpha, mu, and pi expression in gastrointestinal tract mucosa of normal individuals.
        Arch Biochem Biophys. 2002; 403: 270-276
        • Duncan H.
        • Swan C.
        • Green J.
        • Jones P.
        • Brannigan K.
        • Alldersea J.
        • Fryer A.A.
        • Strange R.C.
        Susceptibility to ulcerative colitis and Crohn’s disease.
        Clin Chim Acta. 1995; 240: 53-61
        • de Jong D.J.
        • van der Logt E.M.
        • van Schaik A.
        • Roelofs H.M.
        • Peters W.H.
        • Naber T.H.
        Genetic polymorphisms in biotransformation enzymes in Crohn’s disease.
        Gut. 2003; 52: 547-551
        • Clapper M.L.
        • Adrian R.H.
        • Pfeiffer G.R.
        • Kido K.
        • Everley L.
        • Cooper H.S.
        • Murthy S.
        Depletion of colonic detoxication enzyme activity in mice with dextran sulphate sodium-induced colitis.
        Aliment Pharmacol Ther. 1999; 13: 389-396
        • Raouf A.H.
        • Tsai H.H.
        • Parker N.
        • Hoffman J.
        • Walker R.J.
        • Rhodes J.M.
        Sulphation of colonic and rectal mucin in inflammatory bowel disease.
        Clin Sci (Lond). 1992; 83: 623-626
        • Sabolovic N.
        • Magdalou J.
        • Netter P.
        • Abid A.
        Nonsteroidal anti-inflammatory drugs and phenols glucuronidation in Caco-2 cells.
        Life Sci. 2000; 67: 185-196
        • van Heel D.A.
        • Satsangi J.
        • Carey A.H.
        • Jewell D.P.
        Inflammatory bowel disease.
        Can J Gastroenterol. 2000; 14: 207-218
        • Farrell R.J.
        • Murphy A.
        • Long A.
        • Donnelly S.
        • Cherikuri A.
        • O’Toole D.
        • Mahmud N.
        • Keeling P.W.
        • Weir D.G.
        • Kelleher D.
        High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy.
        Gastroenterology. 2000; 118: 279-288
        • Iizasa H.
        • Genda N.
        • Kitano T.
        • Tomita M.
        • Nishihara K.
        • Hayashi M.
        • Nakamura K.
        • Kobayashi S.
        • Nakashima E.
        Altered expression and function of P-glycoprotein in dextran sodium sulfate-induced colitis in mice.
        J Pharm Sci. 2003; 92: 569-576
        • Kozoni V.
        • Tsioulias G.
        • Shiff S.
        • Rigas B.
        The effect of lithocholic acid on proliferation and apoptosis during the early stages of colon carcinogenesis.
        Carcinogenesis. 2000; 21: 999-1005
        • Zhang J.
        • Kuehl P.
        • Green E.D.
        • Touchman J.W.
        • Watkins P.B.
        • Daly A.
        • Hall S.D.
        • Maurel P.
        • Relling M.
        • Brimer C.
        • Yasuda K.
        • Wrighton S.A.
        • Hancock M.
        • Kim R.B.
        • Strom S.
        • Thummel K.
        • Russell C.G.
        • Hudson Jr, J.R.
        • Schuetz E.G.
        • Boguski M.S.
        The human pregnane X receptor.
        Pharmacogenetics. 2001; 11: 555-572
        • Kamiya A.
        • Inoue Y.
        • Gonzalez F.J.
        Role of the hepatocyte nuclear factor 4alpha in control of the pregnane X receptor during fetal liver development.
        Hepatology. 2003; 37: 1375-1384
        • Uno Y.
        • Sakamoto Y.
        • Yoshida K.
        • Hasegawa T.
        • Hasegawa Y.
        • Koshino T.
        • Inoue I.
        Characterization of six base pair deletion in the putative HNF1-binding site of human PXR promoter.
        J Hum Genet. 2003; 48: 594-597